IJE TRANSACTIONS B: Applications Vol. 29, No. 2 (February 2016) 152-159    Article Under Final Proof

downloaded Downloaded: 167   viewed Viewed: 3014

M. Emadzadeh, M. Pazouki, E. Abdollahzadeh Sharghi and L.Taghavi
( Received: January 05, 2016 – Accepted: January 26, 2016 )

Abstract    Chromium through natural processes and human activities enters the air, soil and water. Chromium-resistant bacteria are capable of reducing toxic Cr(VI) to less toxic Cr(III). In this work, batch studies were conducted to evaluate the effect of environmental factors on the rate of Cr(VI) reduction from synthetic wastewater of metal plating industry by Bacillus cereus under aerobic conditions. The effect of different inoculum volumes (5, 10, 15 and 20 mL), pH (5, 7 and 9), temperatures (20, 30 and 40 °C) and initial concentrations of Cr(VI) (10, 50, 100 and 200 mg/L) for the best performance of chromium removal were investigated during 72 h of cultivation by Bacillus cereus. Complete reduction of Cr(VI) by Bacillus cereus was achieved after 48 h of incubation under optimized conditions of pH 9, inoculum volume of 5 mL, initial chromium concentration of 50 mg/L, and temperature of 40 °C. The results showed the highest rate of reduction at the lowest Cr(VI) concentration (1.04×10-2 h-1.10 mg/L) and the lowest at the highest Cr(VI) concentration (0.55×10-4 h-1.200 mg/L). Atomic absorption spectroscopy analyses under optimized conditions showed the concentration of Cr(III) in the culture supernatant was 49 mg/L after 48 h. The presence of almost all the reduced Cr(III) in the supernatant revealed Cr(VI)-reductase in Bacillus cereus is mainly associated with the soluble fraction of the enzyme. High Cr(VI) concentration resistance and high Cr(VI) reducing ability of Bacillus cereus make it a suitable candidate for bioremediation.


Keywords    Bioreduction of hexavalent chromium, Bacillus cereus, Metal plating industry, pH, Temperature, Inoculum volume, Cr(VI) concentration,


چکیده    کروم از طریق فرآیندهای طبیعی و فعالیت های انسان وارد هوا، خاک و آب میشود. باکتری های مقاوم به کروم قادر به کاهش کروم (VI) سمی به کروم (III) با سمیت کمتر می باشند. در این کار، مطالعات ناپیوسته به منظور بررسی اثر عوامل محیطی بر میزان نرخ کاهش کروم (VI) از پساب سنتزی صنعت آبکاری فلز توسط باسیلوس سرئوس در شرایط هوازی انجام شد. اثر حجم های مختلف مایه تلقیح (5، 10، 15 و 20 میلی لیتر)، pH (5، 7 و 9)، درجه حرارت (20، 30 و 40 درجه سانتی گراد) و غلظت های اولیه کروم (VI) (10، 50 ، 100 و 200 میلی گرم بر لیتر) برای بهترین عملکرد حذف کروم در طول 72 ساعت مورد بررسی قرار گرفت. کاهش کامل کروم (VI) توسط باسیلوس سرئوس بعد از 48 ساعت انکوباسیون تحت شرایط بهینه 9 pH، حجم مایه تلقیح 5 میلی گرم، غلظت اولیه کروم 50 میلی گرم بر لیتر و درجه حرارت 40 درجه سانتی گراد به دست آمد. نتایج نشان داد که بیشترین نرخ کاهش در کمترین غلظت کروم (VI) (mg/L 10. h-1 2-10× 04/1) و کمترین نرخ کاهش در بیشترین غلظت کروم (VI) (mg/L 200. h-1 4-10× 55/0) بود. آنالیز جذب اتمی در شرایط بهینه نشان داد که غلظت کروم (III) در مایع رویی کشت بعد از 48 ساعت 49 میلی گرم بر لیتر بود. حضور تقریبا تمام کروم (III) کاهش یافته در مایع رویی نشان داد که کروم (VI)-ردوکتاز در باسیلوس سرئوس به طور عمده با بخش محلول آنزیم همراه است. مقاومت در برابر غلظت بالای کروم (VI) و توانایی کاهش بالای کروم (VI) باسیلوس سرئوس، آن را یک گزینه مناسب برای تصفیه زیستی می سازد.



1.     Kampalanonwat, P. and Supaphol, P., "Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal", ACS Applied Materials & Interfaces,  Vol. 2, No. 12, (2010), 3619-3627.

2.     Li, X., Qi, Y., Li, Y., Zhang, Y., He, X. and Wang, Y., "Novel magnetic beads based on sodium alginate gel crosslinked by zirconium (iv) and their effective removal for pb 2+ in aqueous solutions by using a batch and continuous systems", Bioresource Technology,  Vol. 142, No., (2013), 611-619.

3.     Prakasham, R., Merrie, J.S., Sheela, R., Saswathi, N. and Ramakrishna, S., "Biosorption of chromium vi by free and immobilized rhizopus arrhizus", Environmental Pollution,  Vol. 104, No. 3, (1999), 421-427.

4.     Agrawal, A., Kumar, V. and Pandey, B., "Remediation options for the treatment of electroplating and leather tanning effluent containing chromium—a review", Mineral Processing and Extractive Metallurgy Review,  Vol. 27, No. 2, (2006), 99-130.

5.     Chaturvedi, M.K., "Studies on chromate removal by chromium-resistant bacillus sp. Isolated from tannery effluent", Journal of Environmental Protection,  Vol. 2, No. 01, (2011), 76-84.

6.     Organization, W.H., "Guidelines for drinking-water quality: Recommendations, World Health Organization,  Vol. 1,  (2004) 23-35.

7.     Vossoughi, M., Moslehi, P. and Alemzadeh, I., "Research note some investigation on bioremediation of sediment in persian gulf coast", International Journal of Engineering Transactions A: Basics,  Vol. 18, No. 1, (2005), 45-53.

8.     O’Connell, D.W., Birkinshaw, C. and O’Dwyer, T.F., "Heavy metal adsorbents prepared from the modification of cellulose: A review", Bioresource Technology,  Vol. 99, No. 15, (2008), 6709-6724.

9.     Ma, Z., Zhu, W., Long, H., Chai, L. and Wang, Q., "Chromate reduction by resting cells of achromobacter sp. Ch-1 under aerobic conditions", Process Biochemistry,  Vol. 42, No. 6, (2007), 1028-1032.

10.   Thacker, U., Parikh, R., Shouche, Y. and Madamwar, D., "Reduction of chromate by cell-free extract of brucella sp. Isolated from cr (vi) contaminated sites", Bioresource technology,  Vol. 98, No. 8, (2007), 1541-1547.

11.   Konovalova, V.V., Dmytrenko, G.M., Nigmatullin, R.R., Bryk, M.T. and Gvozdyak, P.I., "Chromium (vi) reduction in a membrane bioreactor with immobilized pseudomonas cells", Enzyme and Microbial Technology,  Vol. 33, No. 7, (2003), 899-907.

12.   Yun-guo, L., Wei-hue, X., Guang-ming, Z., Chun—fang, T. and Cheng-feng, L., "Experimental study on cr (l/l) reduction by pseudomonas aeruginosa", Journal «jEmJironmnmi Sciences Vol,  Vol. 16, No. 5, (2004), 797-801.

13.   Shen, H. and Wang, Y., "Characterization of enzymatic reduction of hexavalent chromium by escherichia coli atcc 33456", Applied and Environmental Microbiology,  Vol. 59, No. 11, (1993), 3771-3777.

14.   Ackerley, D., Gonzalez, C., Keyhan, M., Blake, R. and Matin, A., "Mechanism of chromate reduction by the escherichia coli protein, nfsa, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction", Environmental Microbiology,  Vol. 6, No. 8, (2004), 851-860.

15.   Ohtake, H., Fujii, E. and Toda, K., "Reduction of toxic chromate in an industrial effluent by use of a chromatereducing strain of enterobacter cloacae", Environmental Technology,  Vol. 11, No. 7, (1990), 663-668.

16.   Wang, P.-C., Mori, T., Komori, K., Sasatsu, M., Toda, K. and Ohtake, H., "Isolation and characterization of an enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions", Applied and Environmental Microbiology,  Vol. 55, No. 7, (1989), 1665-1669.

17.   Garbisu, C., Alkorta, I., Llama, M.J. and Serra, J.L., "Aerobic chromate reduction by bacillus subtilis", Biodegradation,  Vol. 9, No. 2, (1998), 133-141.

18.   Philip, L., Iyengar, L. and Venkobachar, C., "Cr (vi) reduction by bacillus coagulans isolated from contaminated soils", Journal of Environmental Engineering,  Vol. 124, No. 12, (1998), 1165-1170.

19.   Liu, Y.-G., Xu, W.-H., Zeng, G.-M., Li, X. and Gao, H., "Cr (vi) reduction by bacillus sp. Isolated from chromium landfill", Process Biochemistry,  Vol. 41, No. 9, (2006), 1981-1986.

20.   Wang, Y.-T. and Xiao, C., "Factors affecting hexavalent chromium reduction in pure cultures of bacteria", Water Research,  Vol. 29, No. 11, (1995), 2467-2474.

21.   Myers, C., Carstens, B., Antholine, W. and Myers, J., "Chromium (vi) reductase activity is associated with the cytoplasmic membrane of anaerobically grown shewanella putrefaciens mr1", Journal of Applied Microbiology,  Vol. 88, No. 1, (2000), 98-106.

22.   Viamajala, S., Peyton, B.M. and Petersen, J.N., "Modeling chromate reduction in shewanella oneidensis mr1: Development of a novel dualenzyme kinetic model",


Biotechnology and Bioengineering,  Vol. 83, No. 7, (2003), 790-797.

23.   Mishra, R., Dhal, B., Dutta, S., Dangar, T., Das, N. and Thatoi, H., "Optimization and characterization of chromium (vi) reduction in saline condition by moderately halophilic vigribacillus sp. Isolated from mangrove soil of bhitarkanika, india", Journal of Hazardous Materials,  Vol. 227, No., (2012), 219-226.

24.   Chatterjee, S., Ghosh, I. and Mukherjea, K.K., "Uptake and removal of toxic cr (vi) by pseudomonas aeruginosa: Physico-chemical and biological evaluation", Current Science (Bangalore),  Vol. 101, No. 5, (2011), 645-652.

25.   Dhal, B. and Pandey, B., "Process optimization for bio-beneficiation of a chromite concentrate by a cr (vi) reducing native microbe (bacillus sp.)", International Journal of Mineral Processing,  Vol. 123, No., (2013), 129-136.

26.   Pal, A. and Paul, A., "Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil", Microbiological Research,  Vol. 159, No. 4, (2004), 347-354.

27.   Das, S., Mishra, J., Das, S.K., Pandey, S., Rao, D.S., Chakraborty, A., Sudarshan, M., Das, N. and Thatoi, H., "Investigation on mechanism of cr (vi) reduction and removal by bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil", Chemosphere,  Vol. 96, No., (2014), 112-121.

28.   Naik, U.C., Srivastava, S. and Thakur, I.S., "Isolation and characterization of bacillus cereus ist105 from electroplating effluent for detoxification of hexavalent chromium", Environmental Science and Pollution Research,  Vol. 19, No. 7, (2012), 3005-3014.

29.   ASTM D1687 – 12, S.T.M.f.C.i.W., Active Standard ASTM D1687, Developed by Subcommittee: D19.05, Book of Standards Volume: 11.01 (www.astm.org/Standards/D1687 .htm). ,  Vol., No.

30.   Steel, R.G.D. and Torrie, J.H., "Principles and procedures of statistics", Principles and Procedures of Statistics.,  (1960).

31.   Mangaiyarkarasi, M.M., Vincent, S., Janarthanan, S., Rao, T.S. and Tata, B., "Bioreduction of cr (vi) by alkaliphilic bacillus subtilis and interaction of the membrane groups", Saudi Journal of Biological Sciences,  Vol. 18, No. 2, (2011), 157-167.

32.   Kathiravan, M.N., Karthick, R. and Muthukumar, K., "Ex situ bioremediation of cr (vi) contaminated soil by bacillus sp.: Batch and continuous studies", Chemical Engineering Journal,  Vol. 169, No. 1, (2011), 107-115.

33.   Amoozegar, M.A., Ghasemi, A., Razavi, M.R. and Naddaf, S., "Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, nesterenkonia sp. Strain mf2", Process Biochemistry,  Vol. 42, No. 10, (2007), 1475-1479.

34.   Sharifzadeh, M. and HosseinAlizadeh, R., "Artificial neural network approach for modeling of mercury adsorption from aqueous solution by sargassum bevanom algae (research note)", International Journal of Engineering-Transactions B: Applications,  Vol. 28, No. 8, (2015), 1124-1132.

35.   Zhang, K. and Li, F., "Isolation and characterization of a chromium-resistant bacterium serratia sp. Cr-10 from a chromate-contaminated site", Applied Microbiology and Biotechnology,  Vol. 90, No. 3, (2011), 1163-1169.

36.   Ahmad, W.A., Shahir, S. and Zakaria, Z.A., "Mechanisms of bacterial detoxification of cr (vi) from industrial wastewater in the presence of industrial effluent as potential energy source", Universiti Teknologi Malaysia,  Vol., No., (2009).

37.   Megharaj, M., Avudainayagam, S. and Naidu, R., "Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste", Current microbiology,  Vol. 47, No. 1, (2003), 0051-0054.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir