Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 554-562   

downloaded Downloaded: 170   viewed Viewed: 2408

  TOWARDS AN ANALYTICAL MODEL FOR FILM COOLING PREDICTION USING INTEGRAL TURBULENT BOUNDARY LAYER
 
B. S. Sikarwar, A. Bhadauria and P. Ranjan
 
( Received: January 26, 2016 – Accepted in Revised Form: April 14, 2016 )
 
 

Abstract    The objective of this work is to develop deep theoretical methods that are based on the solution of the integral boundary layer equations for investigating film cooling in liquid rocket engine. The integral model assumes that heat is transferred from hot free stream gas to the liquid film both by convection and radiation. The mass is transferred to the free srteam gas by the well-known blowing process. Downstream of the liquid film, the gas effectiveness is obtained by solving boundary layer integral equations. It incorporates a differential model for calorimeter mixing between liquid vapors in the boundary layer with the free stream gas entrained in the boundary layer. Comparisons with existing theoretical and experimental results indicate the film coating trends were well predicted by the present integral model proposed by us.

 

Keywords    Film, Cooling, Analytical, Heat transfer, Rocket, Model

 

چکیده    هدف از این کار، توسعه روش عمیق تئوری است که بر پایه راه حل معادلات لایه مرزی جدایی ناپذیر برای بررسی خنک کننده فیلم در موتور موشک مایع است. مدل انتگرال فرض می کند که گرما از جریان گاز داغ آزاد به فیلم مایع توسط همرفت و تابش منتقل شده است. جرم بوسیله فرایند دمش شناخته شده به جریان گاز آزاد منتقل شده است. در پایین دست فیلم مایع، اثربخشی گاز با حل معادلات انتگرال لایه مرزی به دست آمده است. آن یک مدل دیفرانسیل را برای اختلاط گرماسنج بین بخارات مایع در لایه مرزی با جریان گاز آزاد در لایه مرزی ترکیب می کند. مقایسه نتایج تجربی و تئوری موجود نشان می دهد که روند پوشش دهی فیلمی به خوبی توسط مدل انتگرالی حاضر پیشنهادی توسط ما پیش بینی شده بود.

References   

1.     Sutton, G.P. and Biblarz, O., "Rocket propulsion elements, John Wiley & Sons,  (2010).

2.     Na, S., "Investigation of film cooling effectiveness and enhancement of cooling performance, ProQuest,  (2006).

3.     Shih, T. and Sultanian, B., "Computations of internal and film cooling", Developments In Heat Transfer,  Vol. 8, (2001), 176-226.

4.     Durbin, P. and Shih, T., "An overview of turbulence modeling", Modelling and Simulation of Turbulent Heat Transfer,  Vol. 16, (2005), 3-31.

5.     Kercher, D., "A film-cooling cfd bibliography: 1971–1996", International Journal of Rotating Machinery,  Vol. 4, No. 1, (1998), 61-72.

6.     Kercher, D., "Film-cooling bibliography addendum: 1999-2004", Ipswich, MA, April,  Vol. 19, (2005), 431-442.

7.     Walters, D.K. and Leylek, J.H., "A detailed analysis of film–cooling physics: Part i—streamwise injection with cylindrical holes", in ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, American Society of Mechanical Engineers., (1997), 177-183.

8.     Acharya, S., Tyagi, M. and Hoda, A., "Flow and heat transfer predictions for film cooling", Annals of the New York Academy of Sciences,  Vol. 934, No. 1, (2001), 110-125.

9.     Rozati, A. and Tafti, D.K., "Large-eddy simulations of leading edge film cooling: Analysis of flow structures, effectiveness, and heat transfer coefficient", International Journal of Heat and Fluid Flow,  Vol. 29, No. 1, (2008), 1-17.

10.   Natsui, G., "Surface measurements and predictions of full-coverage film cooling", University of Central Florida Orlando, Florida,  (2012),

11.   White, F.M. and Corfield, I., "Viscous fluid flow, McGraw-Hill New York,  Vol. 3,  (2006).

12.   Schlichting, H. and Gersten, K., "Boundary-layer theory, Springer Science & Business Media,  (2003).

13.   Shembharkar, T. and Pai, B., "Prediction of film cooling with a liquid coolant", International Journal of Heat and Mass Transfer,  Vol. 29, No. 6, (1986), 899-908.

14.   Grisson, W.M., Liquid film cooling in rocket engines., DTIC Document, (1991).

15.   Warner, C. and Emmons, D., "Effects of selected gas stream parameters and coolant properties on liquid film cooling", Journal of Heat Transfer,  Vol. 86, No. 2, (1964), 271-278.

16.   Kinney, G.R., Abramson, A.E. and Sloop, J.L., "Internal-liquid-film-cooling experiments with air-stream temperatures to 2000 degrees f. In 2-and 4-inch-diameter horizontal tubes",  (1952).

17.   Stollery, J. and El-Ehwany, A., "A note on the use of a boundary-layer model for correlating film-cooling data", International Journal of Heat and Mass Transfer,  Vol. 8, No. 1, (1965), 55-65.

18.   Seban, R., "Heat transfer and effectiveness for a turbulent boundary layer with tangential fluid injection", Journal of Heat Transfer,  Vol. 82, No. 4, (1960), 303-312.

19.   Back, L. and Cuffel, R., "Turbulent boundary layer and heat transfer measurements along a convergent-divergent nozzle", Journal of Heat Transfer,  Vol. 93, No. 4, (1971), 397-407.

20.   Tetervin, N., "Approximate calculation of reynolds analogy for turbulent boundary layer with pressure gradient", AIAA Journal,  Vol. 7, No. 6, (1969), 1079-1085.

21.   Elliott, D.G., Bartz, D.R. and Silver, S., "Calculation of turbulent boundary-layer growth and heat transfer in axi-symmetric nozzles, Jet Propulsion Laboratory, California Institute of Technology,  (1963).

22.   Ganji, D. and Babaei, K., "Analytical solution of the laminar boundary layer flow over semi-infinite flat plate: Variable surface temperature", International Journal of Engineering-Transactions B: Applications,  Vol. 23, No. 3&4, (2010), 215.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir