IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 482-489   

downloaded Downloaded: 217   viewed Viewed: 2794

M. Monadia, H. M. V. Samanib and M. Mohammadi
( Received: December 15, 2015 – Accepted in Revised Form: April 14, 2016 )

Abstract    This paper presents a method concerning the integration of the benefit/cost analysis and the real genetic algorithm with various elements of reservoir dam design. The version 4.0 of HEC-RAS software and Hydro-Rout models have been used to simulate the region and flood routing in the reservoir of the dam, respectively. A mathematical programming has been prepared in MATLAB software and linked with the optimal programming then employed to maximize the benefit/cost ratio of the reservoir dam construction. After a sensitivity analysis, mutation and crossover probability are assumed to be 0.05 and 0.7, respectively. The objective function of the study is benefit/cost ratio. The combined methodology has been provided to help to compute the optimal normal water level, length of spillway and downstream levee height of a reservoir dam considering flood control and cost of construction. This is the first attempt to optimize these important parameters, in the construction of a reservoir dam, together considering flood control and economical aspects. It has been displayed that the proposed method provides strong and suitable solutions to determine these parameters. The results showed that there is potential for application of genetic algorithms to such optimization problems, where the objective function is nonlinear and other optimization techniques may be troublesome to apply and find the global optimum.


Keywords    Optimization, Normal Water Level , Spillway Length, Genetic Algorithms, Matlab Software, Reservoir Dam, Sonateh Dam


چکیده    در این مقاله از یک روش که در آن تحلیل سود بر هزینه و الگوریتم ژنتیک پیوسته با هم ترکیب شده­اند برای طراحی سد مخزنی استفاده شده است. برای شبیه­سازی محدوده مورد نظر و روندیابی سیلاب در مخرن سد به ترتیب از نرم افزار4.0 HEC-RAS و Hydro-Rout استفاده شده است. برای یافتن حداکثر مقدار نسبت سود به هزینه ساخت سد یک برنامه کامپیوتری در نرم­افزار MATLAB نوشته شده و با برنامه بهینه­سازی پیوند داده شده است. پس از تحلیل حساسیت برنامه بهینه­سازی، مقادیر جهش و تولید مثل به ترتیب برابر با 05/0 و 7/0 به دست آمدند. در تحقیق حاضر تابع هدف نسبت سود به هزینه ساخت سد مخزنی است. برنامه یاد شده امکان محاسبه مقادیر بهینه رقوم نرمال، طول سرریز و ارتفاع خاکریزپایین­دست سد مخزنی، با در نظر گرفتن کنترل سیلاب و هزینه ساخت سد مخزنی، را فراهم می­سازد. روش معرفی شده در این مقاله اولین تلاش برای به دست آوردن مقادیر بهینه پارامترهای یاد شده با در نظر گرفتن موضوع کنترل سیلاب و جنبه­های اقتصادی سد مخزنی و همچنین روشی قدرتمند برای محاسبه مقادیر پارامترهای یاد شده است. نتایج به دست آمده نشان می­دهد که برای چنین مسائلی که تابع هدف غیرخطی بوده و استفاده از روش­های دیگر بهینه­سازی با مشکلاتی روبه­رو خواهند بود، الگوریتم ژنتیک ابزاری دقیق و قدرتمند خواهد بود.


1.     Workman, J., "Dams and development a new framework for decision-making", Civil Engineering,  Vol. 144, No. 1, (2001), 8-9.

2.     Western, D., "Human-modified ecosystems and future evolution", Proceedings of the National Academy of Sciences,  Vol. 98, No. 10, (2001), 5458-5465.

3.     Han, S.-Y., Kwak, S.-J. and Yoo, S.-H., "Valuing environmental impacts of large dam construction in korea: An application of choice experiments", Environmental Impact Assessment Review,  Vol. 28, No. 4, (2008), 256-266.

4.     Lu, J., "Grey layers analysis method of normal water level of the reservoir selection and its application", Hydroelectric  Energy,  Vol. 17, (1999), 48-52.

5.     Zhang, S. B. and Qu, W. C., "Optimization of reservoir normal water storage with ambiguous relation analysis method", Journalof Liaoning Normal University(Natural Science),  Vol. 22, (1999), 252-255.

6.     Zeng, Y. H., Jiang, T. B. and Quan, X. Z., "Application of grey system theory to selection of reservoir’s normal water level", Hydropower Automation and Dam Monitoring,  Vol. 27, (2003), 57-59.

7.     Jin, J. L., Zhang, L. B. and Wei, Y. M., "Objective weight based comprehensive evaluation method for water resource engineering schemes", Journal of Irrigation and Drainage,  Vol. 23, (2004), 5-9.

8.     Yanmaz, A. M. and Gunindi, M. E., "Capacity and benefit-cost relation for concrete gravity and RCC dams", in World Water and Environmental Resources Congress, (2003), 88-96.

9.     Xie, Q. and Qian, Z., "Application of grey fuzzy comprehensive assessment in optimization of reservoir’s normal water level", Hydroscience and Engineering, Vol. 1, (2006), 59-62.

10.   Bing-yu, H., "Application of multi-principle appraisal method in selection of NPL of hydropower plant", Guangxi Water Resources & Hydropower Engineering,  Vol. 4, (2008), 8-13.

11.   Sun, S., Yan, X., Cui, P. and Feng, J., "A four-step method for optimising the normal water level of reservoirs based on a mathematical programming model—a case study for the songyuan backwater dam in jilin province, china", International Journal of Environmental Research and public Health,  Vol. 8, No. 4, (2011), 1049-1060.

12.   Shafiei, M., Haddad, O. B. and Afshar, A., "GA in optimizing ajichai flood levee's encroachment", in Proceedings of the 6th WSEAS international conference on Evolutionary computing, Citeseer, (2005), 392-399.

13.   Romildo Filho, D., Ebecken, N. F. and Alves, J. L., "Optimization of dam construction costs using genetic algorithms", in 16th ASCE Engineering Mechanics Conference, University of Washington, Seattle, USA, (2003), 154-161.

14.   Sarma, K.C. and Adeli, H., "Cost optimization of concrete structures", Journal of Structural Engineering,  Vol. 124, No. 5, (1998), 570-578.

15.   Sharif, M. and Wardlaw, R., "Multireservoir systems optimization using genetic algorithms: Case study", Journal of Computing in Civil Engineering,  Vol. 14, No. 4, (2000), 255-263.

16.   Salmasi, F., "Design of gravity dam by genetic algorithms", International Journal of Civil and Environmental Engineering,  Vol. 3, No. 3, (2011), 187-192.

17.   Varaei H., and AhmadiNadooshan B., "Optimization of concrete dams using genetic algorithm and particle swarm algorithm", in8th International Congress on Civil Engineering 2009, Shiraz University, Iran, (2009).

18.   Haddad, O. B., Ashofteh, P.-S. and Marino, M.A., "Levee layouts and design optimization in protection of flood areas", Journal of Irrigation and Drainage Engineering,  Vol. 141, No. 8, (2015).

19.   Wanli, Z., Ruilian, W. and Jian, C., "Fuzzy optimization method for selection scheme of normal water level of reservoir based on fuzzy and principal component analysis", Journal of Discrete Mathematical Sciences and Cryptography,  Vol. 17, No. 5-6, (2014), 499-509.

20.   David, R., Ngulube, P. and Dube, A., "A cost-benefit analysis of document management strategies used at a financial institution in zimbabwe: A case study", SA Journal of Information Management,  Vol. 15, No. 2, (2013), 241-252.

21.   Tang, W.H. and Yen, B.C., "Probabilistic inspection scheduling for dams", in Reliability and Uncertainty Analyses in Hydraulic Design, ASCE, (1993), 107-121.

22.   Rahami, H., Kaveh, A. and Gholipour, Y., "Sizing, geometry and topology optimization of trusses via force method and genetic algorithm", Engineering Structures,  Vol. 30, No. 9, (2008), 2360-2369.

23.   Salajegheh, E. and Gholizadeh, S., "Optimum design of structures by an improved genetic algorithm using neural networks", Advances in Engineering Software,  Vol. 36, No. 11, (2005), 757-767.

24.   Goldberg, D. E. and Deb, K., "A comparative analysis of selection schemes used in genetic algorithms", Foundations of Genetic Algorithms,  Vol. 1, (1991), 69-93.

25.           Michalewicz, Z., "Genetic algorithms+ data structures= evolution programs", Springer Science & Business Media,  (2013), 187-195.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir