IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 546-553   

downloaded Downloaded: 174   viewed Viewed: 2605

S. E. Razavi, A. Hosseinpour Shafaghi and N. Piroozfam
( Received: October 27, 2015 – Accepted in Revised Form: April 14, 2016 )

Abstract    In the current paper, the effect of length and angle of a splitter plate on hydro-thermal field in a range of Reynolds number from 40 to 1000 are numerically studied by solving the two-dimensional Navier-Stokes equations. For discretization of governing equations, PISO algorithm was imposed to segregate the pressure-velocity coupled equations, and second-order upwind discretization scheme was applied for momentum and energy values. A convergence criterion was set to 10-6. The influence of splitter plate attachment on the fluctuating drag forces, vortex shedding and heat transfer behavior was investigated. It was found that the drag force decreases as the splitter plate elongates and the vortices vanish. The average Nusselt number rises with increasing the angle of splitter plate. A reduction in drag force was observed at about 25. The overall heat transfer increased due to surface enlargement resulting from the splitter plate. In addition, it was seen that by increasing the plate angle up to 25 the outflow temperature grows.


Keywords    Circular cylinder, laminar flow, splitter plate, heat transfer enhancement, drag coefficient.


چکیده    در مقاله حاضر، تاثیر طول و زاویه صفحه جداگر بر روی خصوصیات هیدرودینامیکی و حرارتی در محدوده اعداد رینولدز 40 تا 1000 به صورت عددی با حل معادله دو بعدی ناویر استوکس بررسی شده است. برای گسسته سازی معادلات، الگوریتم PISO برای معادلات به هم پیوسته فشار- سرعت و روش مرتبه دوم پیشرو برای مقادیر مومنتوم و انرژی به کار گرفته شده است. معیار همگرایی بر روی 6-10 تنظیم شده است. تاثیر صفحه جداگر بر روی نیروی درگ، ساختار گردابه ها و رفتار انتقال حرارت بررسی شده است. مشاهده شد که نیروی درگ با افزایش طول صفحه جداگر کاهش می یابد و گردابه ها به تدریج ناپدید می شوند. متوسط عدد ناسلت با افزایش زاویه صفحه جداگر افزایش می یابد. در زاویه حدود 25 درجه، افت نیروی درگ مشاهد شد. انتقال حرارت کلی به دلیل افزایش سطح تماس ناشی از صفحه جداگر افزایش یافت. علاوه بر این، مشاهده شد که با افزایش زاویه صفحه جداگر تا 25 درجه دمای خروجی زیاد شد.


Gerrard, J., "The mechanics of the formation region of vortices behind bluff bodies", Journal of Fluid Mechanics,  Vol. 25, No. 02, (1966), 401-413.

2.     Chen, H., Huang, P. G. and LeBeau, R. P., "A cell-centered pressure based method for two/three-dimensional unstructured incompressible navier-stokes solver", in 43rd AIAA Aerospace Sciences Meeting and Exhibit, (2005), 10-13.

3.     Boisaubert, N. and Texier, A., "Effect of a splitter plate on the near-wake development of a semi-circular cylinder", Experimental Thermal and Fluid Science,  Vol. 16, No. 1, (1998), 100-111.

4.     Molki, M. and Fotouhi, D., "Thermal field around a circular cylinder with periodic vortex shedding", International Journal of Engineering,  Vol. 10, No. 1, (1997), 27-36.

5.     Nakamura, Y., "Vortex shedding from bluff bodies with splitter plates", Journal of Fluids and Structures,  Vol. 10, No. 2, (1996), 147-158.

6.     Apelt, C. and West, G., "The effects of wake splitter plates on bluff-body flow in the range 10 4< Re< 5 10 4. Part 2", Journal of Fluid Mechanics,  Vol. 71, No. 01, (1975), 145-160.

7.     Apelt, C., West, G. and Szewczyk, A. A., "The effects of wake splitter plates on the flow past a circular cylinder in the range 10 4< Re< 5 10 4", Journal of Fluid Mechanics,  Vol. 61, No. 01, (1973), 187-198.

8.     Sudhakar, Y. and Vengadesan, S., "Vortex shedding characteristics of a circular cylinder with an oscillating wake splitter plate", Computers & Fluids,  Vol. 53, (2012), 40-52.

9.     Nouri-Borujerdi, A. and Lavasani, A., "Flow visualization around a non-circular tube", International Journal of Engineering Transactions B Applications,  Vol. 19, No. 1, (2006), 73-82.

10.   Razavi, S. E., Farhangmehr, V. and Barar, F., "Impact of a splitter plate on flow and heat transfer around circular cylinder at low reynolds numbers", Journal of Applied Science,  Vol. 8, No. 7, (2008), 1286-1292.

11.   Kahrom, M., "The effect of square splittered and unsplittered rods in flat plate heat transfer enhancement", International Journal of Engineering, (2007).

12.   Hwang, J.-Y. and Yang, K.-S., "Drag reduction on a circular cylinder using dual detached splitter plates", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 95, No. 7, (2007), 551-564.

13.   Gu, F., Wang, J., Qiao, X. and Huang, Z., "Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates", Journal of Fluids and Structures,  Vol. 28, (2012), 263-278.

14.   Ozono, S., "Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a cylinder", Physics of Fluids,  Vol. 11, (1999), 2928-2934.

15.   Heidarinejad, G. and Delfani, S., "Direct numerical simulation of the wake flow behind a cylinder using random vortex method in medium to high reynolds numbers", International Journal of Engineering,  Vol. 13, No. 3, (2000), 33-50.




















16.   Emamgholizadeh, M., Gharabaghi, A. M., Abedi, K. and Sedaaghi, M., "Experimental investigation of the effect of splitter plate angle on the under-scouring of submarine pipeline due to steady current and clear water condition", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 3, (2014), 368-377.

17.   Alam, M. M., Sakamoto, H. and Zhou, Y., "Effect of a t-shaped plate on reduction in fluid forces on two tandem cylinders in a cross-flow", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 94, No. 7, (2006), 525-551.

18.   Malekzadeh, S. and Sohankar, A., "Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control plate", International Journal of Heat and Fluid Flow,  Vol. 34, (2012), 15-27.

19.   Kawai, H., "Discrete vortex simulation for flow around a circular cylinder with a splitter plate", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 33, No. 1, (1990), 153-160.

20.   Tiwari, S., Chakraborty, D., Biswas, G. and Panigrahi, P., "Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter", International Journal of Heat and Mass Transfer,  Vol. 48, No. 2, (2005), 439-453.

21.   Shukla, S., Govardhan, R. and Arakeri, J., "Flow over a cylinder with a hinged-splitter plate", Journal of Fluids and Structures,  Vol. 25, No. 04, (2009), 713-720.

22.   Razavi, S., Osanloo, B. and Sajedi, R., "Application of splitter plate on the modification of hydro-thermal behavior of PPFHS", Applied Thermal Engineering,  Vol. 80, (2015), 97-108.

23.   Park, J., Kwon, K. and Choi, H., "Numerical solutions of flow past a circular cylinder at reynolds numbers up to 160", KSME International Journal,  Vol. 12, No. 6, (1998), 1200-1205.

24.   Kwon, K. and Choi, H., "Control of laminar vortex shedding behind a circular cylinder using splitter plates", Physics of Fluids (1994-present),  Vol. 8, No. 2, (1996), 479-486.

25.   Eckert, E. R. G. and Drake Jr, R. M., "Analysis of heat and mass transfer", (1987).

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir