Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 505-513   

downloaded Downloaded: 131   viewed Viewed: 1687

  IMPLEMENTATION OF CONTROL VARIABLES TO EXPLOIT OUTPUT POWER FOR SRGS IN SINGLE PULSE MODE OPERATION
 
T. Yuvaraja and K. Ramya
 
( Received: November 30, 2015 – Accepted in Revised Form: April 14, 2016 )
 
 

Abstract    This paper presents an analytical modeling method of optimal control variables to maximize output power for switched reluctance generators (SRGs) in single pulse mode operation. This method extends the basic theory of the Stiebler model and utilizes the flux linkage function to express the inductance model of SRG. In this paper, the optimal phase current shape of SRG for maximum output power is investigated to determine optimal control variables based on phase current model. The expression of phase current in this paper that is in terms of control variables is solved using the basic equation of phase voltage based on inductance model, and then the characteristics of phase current and the energy conversion relations are analyzed to determine optimal shape of phase current. Furthermore, the expressions of phase flux linkage, rms phase current, and phase torque based on the proposed phase current model are presented in this paper to know the trend of main electrical losses. Results from analysis show that the switched reluctance generator with the optimal control variables can produce maximum output power and the shape of phase current in this case is flat top. Simulation and experimental results are presented to verify the proposed method.

 

Keywords    Optimal Phase current shape, Control Variables, Switched Reluctance Generator

 

چکیده    در این مقاله یک روش مدلسازی تحلیلی از متغیرهای کنترل بهینه برای به حداکثر رساندن قدرت خروجی در ژنراتور مقاومت مغناطیسی در حالت کار تک پالس ارائه شده است. این روش نظریه اساسی مدل استیبلر و بهره گیری از تابع شار برای بیان مدل اندوکتانس SRGرا توسعه می‌دهد. در این مقاله، فاز بهینه شکل رایج SRG برای حداکثر قدرت خروجی برای تعیین متغیرهای کنترل بهینه و بر اساس مدل فعلی فاز بررسی شده است. در این مقاله جریان فاز برحسب متغیر های کنترل با استفاده از معادله عمومی ولتاژ فاز و بر اساس مدل اندوکتانس حل شده و سپس ویژگی های حالت و روابط تبدیل انرژی برای تعیین شکل مطلوب جریانهای فاز مورد تجزیه و تحلیل قرار گرفتند. علاوه بر این، عبارت شار فاز پیوندی، جریان rms فاز، و گشتاور فاز بر اساس مدل جریانهای فاز ارائه شده است تا به شناخت روند اصلی اتلاف الکتریکی بی‌انجامد. نتایج حاصل از تجزیه و تحلیل نشان می دهد که ژنراتور مقاومت مغناطیسی با متغیرهای کنترل بهینه شده می‌تواند حداکثر قدرت خروجی و شکل جریانهای فاز تولید کرده و جریان در این حالت در این مورد بالا مسطح است. شبیه سازی و نتایج عملی به منظور تائید روش پیشنهادی ارائه شده‌اند.

References   

1.     Fahimi, B., Emadi, A. and Sepe Jr, R. B., "A switched reluctance machine-based starter/alternator for more electric cars", Energy Conversion, IEEE Transactions on,  Vol. 19, No. 1, (2004), 116-124.

2.     Schofield, N. and Long, S., "Generator operation of a switched reluctance starter/generator at extended speeds", Vehicular Technology, IEEE Transactions on,  Vol. 58, No. 1, (2009), 48-56.

3.     MacMinn, S. R. and Jones, W. D., "A very high speed switched-reluctance starter-generator for aircraft engine applications", in Aerospace and Electronics Conference, Proceedings of the IEEE 1989 National, IEEE, (1989), 1758-1764.

4.     Ferreira, A., Jones, S. R., Heglund, W. S. and Jones, W. D.,"Detailed design of a 30-kw switched reluctance starter/generators system for a gas turbine engine application", IEEE Trans. Industry Applications,  Vol. 31, No. 3, (1995), 553-561.

5.     Cardenas, R., Ray, W. and Asher, G., "Switched reluctance generators for wind energy applications", in Power Electronics Specialists Conference, 26th Annual IEEE, Vol. 1, (1995), 559-564.

6.     Ziapour, M., Afjei, E. and Yousefi, M., "Optimum commutation angles for voltage regulation of a high speed switched reluctance generator", in Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2013 4th, IEEE, (2013), 271-276.

7.     Asadi, P., Ehsani, M. and Fahimi, B., "Design and control characterization of switched reluctance generator for maximum output power", in Applied Power Electronics Conference and Exposition, Twenty-First Annual IEEE, (2006), 325-332.

8.     Kerdtuad, P. and Kittiratsatcha, S., "Modeling of a switched reluctance generator using cubic spline coefficients on the phase flux linkage, inductance and torque equations", Advances in Electrical and Computer Engineering,  Vol. 15, No. 1, (2015), 41-48.

9.     Choi, D.-W., Byun, S.-I. and Cho, Y.-H., "A study on the maximum power control method of switched reluctance generator for wind turbine", Magnetics, IEEE Transactions on,  Vol. 50, No. 1, (2014), 1-4.

10.   Chen, H. and Shao, Z., "Turn-on angle control for switched reluctance wind power generator system", in Industrial Electronics Society, 30th Annual Conference of IEEE, Vol. 3, (2004), 2367-2370.

11.   Yilmaz, S. and Torrey, D. A., "Closed loop control of excitation parameters for high speed switchedreluctance generators", IEEE Trans. Power Electronics,  Vol. 19, No. 2, (2004), 335-362.

12.   Kioskeridis, I. and Mademlis, C., "Optimal efficiency control of switched reluctance generators", Power Electronics, IEEE Transactions on,  Vol. 21, No. 4, (2006), 1062-1072.

13.   Yu, S., Zhang, F., Lee, D.-H. and Ahn, J.-W., "High efficiency operation of a switched reluctance generator over a wide speed range", Journal of Power Electronics,  Vol. 15, No. 1, (2015), 123-130.

14.   Wongguokoon, S. and Kittiratsatcha, S., "Analysis of a switched-reluctance generator for maximum energy conversion", in Sustainable Energy Technologies, IEEE International Conference on, (2008), 125-129.

15.   Thongprasri, P. and Kittiratsatcha, S., "Optimal excitation angles of a switched reluctance generator for maximum output power", Journal of Electrical Engineering & Technology,  Vol. 9, No. 5, (2014), 1527-1536.

16.   Srinivas, K. and Arumugam, R., "Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation", Magnetics, IEEE Transactions on,  Vol. 39, No. 3, (2003), 1806-1812.

17.   Hossain, S. A. and Husain, I., "A geometry based simplified analytical model of switched reluctance machines for real-time controller implementation", Power Electronics, IEEE Transactions on,  Vol. 18, No. 6, (2003), 1384-1389.

18.   Roux, C. and Morcos, M. M., "On the use of a simplified model for switched reluctance motors", Energy Conversion, IEEE Transactions on,  Vol. 17, No. 3, (2002), 400-405.

19.   Chi, H.-P., Lin, R.-L. and Chen, J.-F., "Simplified flux-linkage model for switched-reluctance motors", in Electric Power Applications, IEE Proceedings-, IET. Vol. 152, (2005), 577-583.

20.   Stiebler, M. and Liu, K., "An analytical model of switched reluctance machines", Energy Conversion, IEEE Transactions on,  Vol. 14, No. 4, (1999), 1100-1107.

21.   Materu, P. N. and Krishnan, R., "Estimation of switched reluctance motor losses", Industry Applications, IEEE Transactions on,  Vol. 28, No. 3, (1992), 668-679.

22.   Rafajdus, P., Hrabovcova, V. and Hudak, P., "Investigation of losses and efficiency in switched reluctance motor", in Power Electronics and Motion Control Conference, IEEE, (2006), 296-301.

23.   Yu, S., Lee, D.-H. and Ahn, J.-W., "Efficiency analysis of switched reluctance generator according to current shape under rated speed", in Journal of International Conference on Electrical Machines and Systems. Vol. 2, (2013), 491-497.

24.   Lin, R.-L., Chen, J. and Chi, H.-P., "Spice-based flux-linkage model for switched reluctance motors", in Electric Power Applications, IEE Proceedings-, IET. Vol. 152, (2005), 1468-1476.

25.   Krishnamurthy, M., Fahimi, B. and Edrington, C. S., "On the measurement of mutual inductance for a switched reluctance machine", in Power Electronics Specialists Conference, IEEE, (2006), 1-7.

26.   Bae, H.-K. and Krishnan, R., "A novel approach to control of switched reluctance motors considering mutual inductance", in Industrial Electronics Society, Annual Conference of the IEEE, Vol. 1, (2000), 369-374.

 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir