IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 572-580   

downloaded Downloaded: 252   viewed Viewed: 2783

K. Ajay and L. Kundan
( Received: December 04, 2015 – Accepted in Revised Form: April 14, 2016 )

Abstract    The present work evaluates the performance of solar collector using Al2O3-C2H6O2-H2O nanofluid as a working fluid through both experimental and CFD analysis. Ethylene-glycol water mixture (40:60 v/v) is used as base fluid, where α-Al2O3 nanoparticle of 20 nm average size is dispersed for the preparation of nanofluid of four different volumetric concentration (vol. conc.) of 0.05, 0.075, 0.1 and 0.125%. Three different volume flow rates of 30 LPH, 50 LPH and 80 LPH are used. CFD analysis is carried out through ANSYS FLUENT 14.5. From both experimental and CFD analysis, an improvement in overall efficiency of solar collector is reported when nanofluid is used as compared to water-ethylene glycol mixture. With 0.125% vol. conc. of nanofluid Al2O3-C2H6O2-H2O (DI) maximum overall efficiency of about 4.6, 7.9 and 14.8% is reported at 30 LPH, 50 LPH and 80 LPH, respectively from CFD results while from experimental results maximum overall efficiency of about 4.3, 7.5 and 13.8% is seen at 30 LPH, 50 LPH and 80 LPH, respectively. Also, with increasing volume flow rate of working fluid, corresponding improvement in the overall efficiency of solar collector takes place. Close agreement is also developed between experimental and CFD result.


Keywords    Solar energy, parabolic solar collector, ethylene glycol-water mixture, nanofluid, CFD, thermal efficiency.


چکیده    کار حاضر، عملکرد کلکتور خورشیدی را با استفاده از نانوسیال Al2O3-C2H6O2-H2O به عنوان سیال کاری از طریق هم تجزیه و تحلیل تجربی و هم CFD ارزیابی می کند. مخلوط اتیلن گلیکول- آب (40:60 V / V) به عنوان سیال پایه، که در آن نانوذرات α-Al2O3 به اندازه متوسط 20 نانومتر ​​برای آماده سازی نانو سیال با چهار غلظت مختلف حجمی 05/0 ، 075/0، 1/0و 125/0 ٪ پراکنده است، استفاده می شود. سه نرخ جریان حجمی مختلف 30 LPH، 50 LPH و 80 LPH استفاده شده است. تجزیه و تحلیل CFD از طریق ANSYS FLUENT 14.5 انجام شده است. از هر دو تجزیه و تحلیل تجربی و CFD، بهبود در بازده کلی کلکتور خورشیدی هنگامی گزارش شده است که از نانو سیال در مقایسه با مخلوط آب -اتیلن گلیکول استفاده شده است. باغلظت حجمی 125/0 درصدی نانو سیال Al2O3-C2H6O2-H2O (DI)، حداکثر بازده کلی حدود 6/4، 9/7 و 8/14٪ به ترتیب در 30 LPH ، 50 LPH و 80 LPH با استفاده از نتایج CFD گزارش شده است، در حالی که از نتایج تجربی حداکثر بازده کلی حدود 3/4 ، 5/7 و 8/13٪ به ترتیب در 30 LPH 50 LPH و 80 LPH دیده می شود. همچنین، با افزایش میزان جریان حجمی سیال کاری، بهبود در بازده کلی کلکتور خورشیدی رخ می دهد. تطابق نزدیکی نیز بین نتیجه CFD و تجربی توسعه یافته است.


1.     Wall, A., "Advantages and disadvantages of solar energy", in Process Industry Forum. Vol. 7, (2013), 395-408.

2.     Sozen, A., Menlik, T. and Ünvar, S., "Determination of efficiency of flat-plate solar collectors using neural network approach", Expert Systems with Applications,  Vol. 35, No. 4, (2008), 1533-1539.

3.     Zhai, H., Dai, Y., Wu, J., Wang, R. and Zhang, L., "Experimental investigation and analysis on a concentrating solar collector using linear fresnel lens", Energy Conversion and Management,  Vol. 51, No. 1, (2010), 48-55.

4.     Sani, E., Mercatelli, L., Barison, S., Pagura, C., Agresti, F., Colla, L. and Sansoni, P., "Potential of carbon nanohorn-based suspensions for solar thermal collectors", Solar Energy Materials and Solar Cells,  Vol. 95, No. 11, (2011), 2994-3000.

5.     Barlev, D., Vidu, R. and Stroeve, P., "Innovation in concentrated solar power", Solar Energy Materials and Solar Cells,  Vol. 95, No. 10, (2011), 2703-2725.

6.     Philip, J. and Shima, P., "Thermal properties of nanofluids", Advances in Colloid and Interface Science,  Vol. 183, (2012), 30-45.

7.     Wong, K.V. and De Leon, O., "Applications of nanofluids: Current and future", Advances in Mechanical Engineering,  Vol. 2, (2010), 1-11.

8.     Lee, S., Choi, S.-S., Li, S., and and Eastman, J., "Measuring thermal conductivity of fluids containing oxide nanoparticles", Journal of Heat transfer,  Vol. 121, No. 2, (1999), 280-289.

9.     Khullar, V. and Tyagi, H., "A study on environmental impact of nanofluid-based concentrating solar water heating system", International Journal of Environmental Studies,  Vol. 69, No. 2, (2012), 220-232.

10.   Tyagi, H., Phelan, P. and Prasher, R., "Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector", Journal of Solar Energy Engineering,  Vol. 131, No. 4, (2009), 1-7.

11.   Otanicar, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G. and Taylor, R.A., "Nanofluid-based direct absorption solar collector", Journal of Renewable and Sustainable Energy,  Vol. 2, No. 3, (2010), 1-13.

12.   Chougule, S.S., Pise, A.T. and Madane, P.A., "Performance of nanofluid-charged solar water heater by solar tracking system", in Advances in Engineering, Science and Management (ICAESM), International Conference on, IEEE., (2012), 247-253.

13.   Han, D., Meng, Z., Wu, D., Zhang, C. and Zhu, H., "Thermal properties of carbon black aqueous nanofluids for solar absorption", Nanoscale Research Letters,  Vol. 6, No. 1, (2011), 1-7.

14.   Chaji, H., Ajabshirchi, Y., Esmaeilzadeh, E., Heris, S.Z., Hedayatizadeh, M. and Kahani, M., "Experimental study on thermal efficiency of flat plate solar collector using tio^ sub 2^/water nanofluid", Modern Applied Science,  Vol. 7, No. 10, (2013), 60-69.

15.   Alim, M., Abdin, Z., Saidur, R., Hepbasli, A., Khairul, M. and Rahim, N., "Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids", Energy and Buildings,  Vol. 66, (2013), 289-296.


International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir