IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 530-538   

downloaded Downloaded: 222   viewed Viewed: 2618

M. Gorji, H. Ghassemi and J. Mohammadi
( Received: February 27, 2016 – Accepted in Revised Form: April 14, 2016 )

Abstract    This research has been carried out to determine the marine propeller hydro-acoustic characteristics by Reynolds-Averaged Navier-Stokes (RANS) solver in both uniform and non-uniform wake flow at different operating conditions Wake flow can cause changes in pressure fluctuation and gas effect on propeller noise spectrum. Noise is generated by the induced trailing vortex wake and induced pressure pulses. The two-step Fflowcs Williams and Hawkings (FW-H) equations are used to calculate hydrodynamic pressure and its performance as well as sound pressure level (SPL) at various points around the propeller. The directivity patterns of this propeller and accurate explanation of component propeller noise are discussed. Comparison of the numerical results shows good agreement with the experimental data. Based on these results, effects of wake flow and operating conditions on the noise reduction are investigated.


Keywords    Marine propeller, Sound pressure Level, Hydrodynamic performance


چکیده    پژوهش انجام شده در این مقاله خصوصیات نویز هیدرودینامیکی پروانه های دریایی به روش رینولدز متوسط ناویر استوکس RANS در جریان یکنواخت و غیریکنواخت و در شرایط عملکردی مختلف بررسی شده است. و یک جریان میتواند روی نوسانات میدان فشار اطراف پروانه تاثیر بگذارد. در مقاله های مختلف تاثیر این پارامتر روی نویز کمتر بررسی شده است. نویز در این حالت از القا ورتکس لبه فرار و پالس های فشاری ایجاد میشود. از معادلات دو مرحله ای ویلیامز ها وکینگز FW-H برای محاسبه نوسانات فشاری و سطح نویز استفاده شده است. میدان جریان اطراف پروانه و پارامترهای مختلف موثر در نویز پروانه به تفصیل در این مقاله بررسی شده است. برای اعتبار سنجی نتایج هیدرودینامیکی و هیدرو اکوستیکی از نتایج تجربی استفاده شده که تطابق خوبی مشاهده میشود. بر اساس نتایج حاصل از این مقاله، تاثیرات ویک ورودی و تاثیرات نسبت سرعت پیشروی بر روی سطح نویز پروانه های دریایی بدست آمده است.


1.     Carlton, J., "Marine propellers and propulsion, Butterworth-Heinemann,  (2011), 51-60.

2.     Crocker, M. J., "Encyclopedia of acoustics", John Wiley,  (1997), 94-103.

3.     Pan, Y.-c. and Zhang, H.-x., "Numerical hydro-acoustic prediction of marine propeller noise", Journal of Shanghai Jiaotong University (Science),  Vol. 15, (2010), 707-712.

4.     Kerwin, J. E. and Lee, C.-S., "Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory", Society of Naval Architects and Marine Engineers Transactions, Vol. 86, (1978), 218-253.

5.     Hoshino, T., "Hydrodynamic analysis of propellers in unsteady flow using a surface panel method", Journal of the Society of Naval Architects of Japan, Vol. 1993, No. 174, (1993), 71-87.

6.     Funeno, I., "Analysis of unsteady viscous flows around a highly skewed propeller", Journal of Kansai Society of Naval Architects,  Vol. 237, (2002), 39-45.

7.     hu, X.-f., Huang, Z.-y. and Hong, F.-w., "Unsteady hydrodynamics forces of propeller predicted with viscous CFD", Journal of Hydrodynamics (Ser. A),  Vol. 6, (2009), 734-739.

8.     Li, W. and Yang, C., "Numerical simulation of flow around a podded propeller", in The Nineteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, (2009).

9.     Mousavi, B., Rahrovi, A. and Kheradmand, S., "Numerical simulation of tonal and broadband hydrodynamic noises of non-cavitating underwater propeller", Polish Maritime Research,  Vol. 21, No. 3, (2014), 46-53.

10.   Jang, J.-S., Kim, H.-T. and Joo, W.-H., "Numerical study on non-cavitating noise of marine propeller", in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering. Vol. 249, (2014), 3017-3022.

11.   Gavzan, I. J. and Rad, M., "Influence of afterbody and boundary layer on cavitating flow", International Journal of Engineering-Transactions B: Applications,  Vol. 22, No. 2, (2009), 185-196.

12.   Bagheri, M. R., Mehdigholi, H., Seif, M. S. and Yaakob, O., "An experimental and numerical prediction of marine propeller noise under cavitating and non-cavitating conditions", Brodogradnja,  Vol. 66, No. 2, (2015), 29-45.

13.   Kim, D., Lee, K. and Seong, W., "Non-cavitating propeller noise modeling and inversion", Journal of Sound and Vibration,  Vol. 333, No. 24, (2014), 6424-6437.

14.   Pan, Y.-c. and Zhang, H.-x., "Numerical prediction of marine propeller noise in non-uniform inflow", China Ocean Engineering,  Vol. 27, (2013), 33-42.



15.   Lidtke, A. K., Humphrey, V. F. and Turnock, S. R., "Feasibility study into a computational approach for marine propeller noise and cavitation modelling", Ocean Engineering, (2015), 33-42.

16.   Caridi, D., "Industrial cfd simulation of aerodynamic noise", Universita degli Studi di Napoli Federico II,  (2008),185-196.

17.   Lighthill, M. J., "On sound generated aerodynamically. I. General theory", in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society. Vol. 211, (1952), 564-587.

18.   Williams, J. F. and Hawkings, D. L., "Sound generation by turbulence and surfaces in arbitrary motion", Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,  Vol. 264, No. 1151, (1969), 321-342.

19.   CFX, C., "Solver theory, cfx-program (version 11.0) theory documentation", ANSYS Inc., Canonsburg, USA,  (2012), 153-161.

20.   Atlar, M., Takinaci, A. C., Korkut, E., Sasaki, N. and Aono, T., "Cavitation tunnel tests for propeller noise of a FRV and comparisons with full-scale measurements", caltech. edu/cav2001: sessionB8. 007,  (2001), 173-181.


International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir