|

|
IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 530-538
|
Downloaded:
222 |
|
Viewed:
2618 |
|
|
DETERMINING THE HYDRO-ACOUSTIC CHARACTERISTICS OF THE SHIP PROPELLER IN UNIFORM AND NON-UNIFORM FLOW
|
|
|
M. Gorji, H. Ghassemi and J. Mohammadi
|
|
|
( Received:
February 27, 2016
– Accepted in Revised Form: April 14, 2016 )
|
|
|
Abstract
This
research has been carried out to determine the marine propeller
hydro-acoustic characteristics by Reynolds-Averaged
Navier-Stokes (RANS) solver
in both uniform and non-uniform wake flow at different operating conditions
Wake flow can
cause changes in pressure fluctuation and gas effect on propeller
noise spectrum. Noise is generated by the induced
trailing vortex wake and
induced pressure pulses. The two-step Fflowcs Williams and Hawkings (FW-H)
equations are used
to calculate hydrodynamic pressure and its performance as
well as sound pressure level (SPL) at various points around
the propeller. The
directivity patterns of this propeller and accurate explanation of component
propeller noise are
discussed. Comparison of the numerical results shows good
agreement with the experimental data. Based
on these results,
effects of wake flow and operating conditions on the noise
reduction are investigated.
|
|
|
Keywords
Marine propeller, Sound pressure Level, Hydrodynamic performance
|
|
|
چکیده
پژوهش
انجام شده در این مقاله خصوصیات نویز هیدرودینامیکی پروانه های دریایی به روش
رینولدز متوسط ناویر استوکس RANS در جریان یکنواخت و غیریکنواخت و در شرایط عملکردی
مختلف بررسی شده است. و یک جریان میتواند روی نوسانات میدان فشار اطراف پروانه
تاثیر بگذارد. در مقاله های مختلف تاثیر این پارامتر روی نویز کمتر بررسی شده است.
نویز در این حالت از القا ورتکس لبه فرار و پالس های فشاری ایجاد میشود. از
معادلات دو مرحله ای ویلیامز ها وکینگز FW-H برای محاسبه نوسانات
فشاری و سطح نویز استفاده شده است. میدان جریان اطراف پروانه و پارامترهای مختلف
موثر در نویز پروانه به تفصیل در این مقاله بررسی شده است. برای اعتبار سنجی نتایج
هیدرودینامیکی و هیدرو اکوستیکی از نتایج تجربی استفاده شده که تطابق خوبی مشاهده
میشود. بر اساس نتایج حاصل از این مقاله، تاثیرات ویک ورودی و تاثیرات نسبت سرعت
پیشروی بر روی سطح نویز پروانه های دریایی بدست آمده است.
|
|
References
1. Carlton, J., "Marine propellers and
propulsion, Butterworth-Heinemann,
(2011), 51-60.
2. Crocker,
M. J., "Encyclopedia of acoustics", John Wiley, (1997), 94-103.
3. Pan,
Y.-c. and Zhang, H.-x., "Numerical hydro-acoustic prediction of marine
propeller noise", Journal of Shanghai Jiaotong University
(Science), Vol. 15, (2010),
707-712.
4. Kerwin,
J. E. and Lee, C.-S., "Prediction
of steady and unsteady marine propeller performance by numerical
lifting-surface theory", Society of Naval
Architects and Marine Engineers Transactions, Vol. 86, (1978), 218-253.
5. Hoshino,
T., "Hydrodynamic analysis of propellers in unsteady flow using a surface
panel method", Journal of the Society
of Naval Architects of Japan, Vol. 1993, No. 174, (1993), 71-87.
6. Funeno,
I., "Analysis of unsteady viscous flows around a highly skewed propeller",
Journal
of Kansai Society of Naval Architects,
Vol. 237, (2002), 39-45.
7. hu,
X.-f., Huang, Z.-y. and Hong, F.-w., "Unsteady hydrodynamics forces of
propeller predicted with viscous CFD", Journal of Hydrodynamics (Ser. A), Vol. 6, (2009), 734-739.
8. Li,
W. and Yang, C., "Numerical simulation of flow around a podded
propeller", in The Nineteenth International Offshore and Polar Engineering
Conference, International Society of Offshore and Polar Engineers, (2009).
9. Mousavi,
B., Rahrovi, A. and Kheradmand, S., "Numerical simulation of tonal and
broadband hydrodynamic noises of non-cavitating underwater propeller", Polish
Maritime Research, Vol. 21, No.
3, (2014), 46-53.
10. Jang, J.-S., Kim, H.-T. and Joo, W.-H.,
"Numerical study on non-cavitating noise of marine propeller", in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of
Noise Control Engineering. Vol. 249, (2014), 3017-3022.
11. Gavzan, I. J. and Rad, M., "Influence of
afterbody and boundary layer on cavitating flow", International Journal of
Engineering-Transactions B: Applications, Vol. 22, No. 2, (2009), 185-196.
12. Bagheri, M. R., Mehdigholi, H., Seif, M. S.
and Yaakob, O., "An experimental and numerical prediction of marine
propeller noise under cavitating and non-cavitating conditions", Brodogradnja, Vol. 66, No. 2, (2015), 29-45.
13. Kim, D., Lee, K. and Seong, W.,
"Non-cavitating propeller noise modeling and inversion", Journal
of Sound and Vibration, Vol.
333, No. 24, (2014), 6424-6437.
14. Pan, Y.-c. and Zhang, H.-x., "Numerical
prediction of marine propeller noise in non-uniform inflow", China
Ocean Engineering, Vol. 27,
(2013), 33-42.
15. Lidtke, A. K., Humphrey, V. F. and Turnock,
S. R., "Feasibility study into a computational approach for marine
propeller noise and cavitation modelling", Ocean Engineering, (2015),
33-42.
16. Caridi, D., "Industrial cfd simulation
of aerodynamic noise", Universita degli Studi di Napoli Federico II, (2008),185-196.
17. Lighthill, M. J., "On sound generated
aerodynamically. I. General theory", in Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, The Royal
Society. Vol. 211, (1952), 564-587.
18. Williams, J. F. and Hawkings, D. L.,
"Sound generation by turbulence and surfaces in arbitrary motion", Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, Vol. 264,
No. 1151, (1969), 321-342.
19. CFX, C., "Solver theory, cfx-program (version 11.0) theory
documentation", ANSYS Inc., Canonsburg, USA, (2012), 153-161.
20. Atlar, M., Takinaci, A. C., Korkut, E.,
Sasaki, N. and Aono, T., "Cavitation tunnel tests for propeller noise of a
FRV and comparisons with full-scale measurements", caltech. edu/cav2001: sessionB8.
007, (2001), 173-181.
|
|
|
|
|