|

|
IJE TRANSACTIONS A: Basics Vol. 29, No. 4 (April 2016) 464-472
|
Downloaded:
146 |
|
Viewed:
2214 |
|
|
INTRODUCTION OF AIR CUSHION TO REDUCE SEISMIC DEMAND IN CYLINDRICAL WATER STORAGE TANKS
|
|
|
F. Ashrafzadeh, S. Tariverdilo and M. R. Sheidaii
|
|
|
( Received:
December 20, 2015
– Accepted in Revised Form: April 14, 2016 )
|
|
|
Abstract
Water
storage tanks not
designed explicitly for seismic loading could require retrofit. One of the common
ways of retrofit
include some structural change in the lateral load resisting
system that could be expensive and requires the tank to be
out of service for
relatively long time. This paper introduces a novel method to reduce seismic
demand on tank’s wall
without structural intervention. This is done by
employing air cushions adjacent to the wall. The paper investigates the
effect
of air cushion system on the seismic response of the cylindrical water storage
tanks. While in tank without air
cushion, the boundary condition adjacent to
tank wall is kinematic with no control on the wall pressure, in the
proposed
method this boundary condition becomes kinetic, enabling control of dynamic
fluid pressure on the tank walls.
The response parameters of the tank is
developed in terms of wall pressure, wave height, base shear, and
overturning
moment in cylindrical tanks of different sizes with and without air cushions
under the far field and near
source ground motions. The results demonstrate
that the proposed method is an effective way to reduce sloshing force
demand.
|
|
|
Keywords
Keywords: Cylindrical water storage tanks, Air cushion, Seismic response, boundary condition, Wall pressure.
|
|
|
چکیده
مخازن ذخیره آب که برای بارهای لرزه ای طراحی نشده اند،
اغلب نیازمند بهسازی هستند. روش معمول بهسازی لرزهای در برگیرنده تغییراتی در
سیستم سازهای مخازن میباشد که هزینهبر بوده و توام با خروج از سرویس مخزن برای
زمان طولانی است. مقاله حاضر روشی جدید مبتنی بر کاهش نیاز در دیوارههای مخازن
تحت بارگذاری لرزهای معرفی مينمايد که نيازمند تغییر در سازه مخزن نیست. اين امر با تعبیه بالشتک
هوا در حد فاصل ديوار مخزن و سيال انجام ميشود. در مخازن عادی (بدون بالشتک)
شرایط مرزی دیواره مخزن سینماتیکی است و هیچگونه کنترلی روی فشار سیال وارد بر
دیواره مخزن وجود ندارد. با تعبیه بالشتک، شرایط مرزی در دیواره سینتیکی شده،
امکان کنترل فشار سیال بر روی دیواره مخزن ایجاد ميگردد. در اين مقاله، پاسخ مخزن
شامل فشار سیال بر دیواره، ارتفاع موج، برش و لنگر خمشی در مخازن استوانهای به
ابعاد مختلف با و بدون بالشتک هوا برای زلزلههای حوزه دور و نزدیک ارائه شده و
کارایی سيستم پيشنهادی بررسی شده است. نتایج نشانگر آن است که روش ارائهشده یک
روش مؤثر برای کنترل نیروی ناشی از مواج شدگی است.
|
|
References
1. Hashemi, S., Saadatpour, M. and
Kianoush, M., "Dynamic behavior of flexible rectangular fluid
containers", Thin-Walled Structures,
Vol. 66, (2013), 23-38.
2. Kianoush, M. and Ghaemmaghami, A.,
"The effect of earthquake frequency content on the seismic behavior of
concrete rectangular liquid tanks using the finite element method incorporating
soil–structure interaction", Engineering Structures, Vol. 33, No. 7, (2011), 2186-2200.
3. Shekari, M., Khaji, N. and Ahmadi,
M., "A coupled be–fe study for evaluation of
seismically isolated cylindrical liquid storage tanks considering
fluid–structure interaction", Journal of Fluids and Structures, Vol. 25, No. 3, (2009), 567-585.
4. Shekari, M., Khaji, N. and Ahmadi,
M., "On the seismic behavior of cylindrical base-isolated liquid storage
tanks excited by long-period ground motions", Soil Dynamics and Earthquake
Engineering, Vol. 30, No. 10,
(2010), 968-980.
5. Malhotra, P.K., "New method for
seismic isolation of liquid-storage tanks", Earthquake Engineering &
Structural Dynamics, Vol. 26,
No. 8, (1997), 839-847.
6. De Angelis, M., Giannini, R. and
Paolacci, F., "Experimental investigation on the seismic response of a
steel liquid storage tank equipped with floating roof by shaking table
tests", Earthquake engineering & Structural Dynamics, Vol. 39, No. 4, (2010), 377-396.
7. Anderson, J.G., "Liquid
sloshing in containers: Its utilisation and control", Victoria University
of Technology, (2000).
8. Guzel, B.U., Gradinscak, M.,
Semercigil, S.E. and Turan, O.F., "Control of liquid sloshing in flexible
containers: Part 1. Added mass", in 15th Australasian Fluid Mechanics
Conference, University of Sydney, Sydney, Australia. (2004(.
9. Guzel, B., Gradinscak, M.,
Semercigil, S. and Turan, Ö., "Tuning
flexible containers for sloshing control", IMAC XXIII, (2004(.
10. Gradinscak, M., "Liquid sloshing
in containers with flexibility", Victoria University, (2009).
11. Mousavi, J. and Tariverdilo, S.,
"Employing internal flexible wall as mass absorber in tanks subjected to
harmonic excitations", International Journal of
Engineering-Transactions A: Basics,
Vol. 27, No. 10, (2014), 1527-1536.
12. Mahmoudi, R., Ashrafzadeh, F. and
Tariverdilo, S., "Introducing padded wall to reduce sloshing induced wall
pressure in water storage tanks", International Journal of
Engineering-Transactions C: Aspects,
Vol. 27, No. 12, (2014), 1823-1832.
13. Ibrahim, R.A., "Liquid sloshing
dynamics: Theory and applications, Cambridge University Press, (2005(.
14. Hernandez-Barrios, H., Heredia-Zavoni,
E. and Aldama-Rodriguez, A.A., "Nonlinear sloshing response of cylindrical
tanks subjected to earthquake ground motion", Engineering Structures, Vol. 29, No. 12, (2007), 3364-3376.
15. Council, B.S.S., "Nehrp
recommended provisions for seismic regulations for new buildings and other
structures (fema 450): Provisions, Building Seismic Safety Council, National
Institute of Building Sciences, (2004(.
16. American Concrete Institute,
"Seismic design of liquid containing concrete structures", (2006(.
17. Housner, G., "Dynamic pressure on
fluid containers", TID-7027, Nuclear Reactors and Earthquakes, Vol., No., (1963), 183-209.
|
|
|
|
|