IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 830-838    Article in Press

downloaded Downloaded: 110   viewed Viewed: 1659

A. H. Mogheyse and H. Miar Naimi
( Received: April 09, 2017 – Accepted in Revised Form: April 21, 2017 )

Abstract    In this paper two dimensional wave propagation is used for power combining in drain nodes of a distributed amplifier (DA). The proposed two dimensional DA uses an electrical funnel to add the currents of drain nodes. The proposed structure is modified due to gate lines considerations. Total gain improvement is achieved by engineering the characteristic impedance of gate lines and also make appropriate variation in the output of gain cells. All variations are done with respect to input and output reflection loss considerations. Analytical expression for the gain of the proposed DA is presented and design considerations for electrical funnel are discussed. Based on two dimensional power combining a wide band DA is simulated using TSMC 0.18 CMOS model in ADS which consumes 49.42 mw from 1.2V power supply. Good agreement between the proposed DA gain and calculated value is achieved. Although one stage DA is used, the final results yield a high figure of merit (FOM) in 0.18 CMOS technology. The final design shows 11.1 dB gain from near DC to 23.6 GHz, noise figure between 3 to 5.2dB and maximum output power of 7.1dBm at 1-dB output compression point (OP1dB).


Keywords    Distributed Amplifier, Two Dimensional Distributed Amplifier, Electrical Funnel, Power Combining


چکیده    در این مقاله از انتشار دو بعدی امواج برای ترکیب توان در درین تقویت کننده توزیع شده، استفاده شده است. تقویت کننده دو بعدی مورد نظر از یک Electrical Funnel برای جمع کردن جریان نقاط درین استفاده می کند. ساختار مورد نظر با توجه به ملاحظات گیت اصلاح می شود. از طریق مهندسی امپدانس خطوط گیت ها و ایجاد تغییرات مناسب در خروجی سلول های گین، بهبود گین کلی تقویت کننده حاصل می شود. تمامی تغییرات اعمال شده با توجه به ملاحظات تلفات انعکاس در ورودی و خروجی انجام شده است. روابط تحلیلی برای گین تقویت کننده توزیع شده مورد نظر ارائه شده است و ملاحظات طراحی Electrical Funnel بحث شده است. بر اساس ترکیب توان دو بعدی یک تقویت کننده توزیع شده پهن باند با استفاده از مدل TSMC 0.18 CMOS در ADS شبیه سازی شده است که توانی برابر با 49.42 میلی وات از منبع 1.2 ولتی مصرف می کند. پاسخ بدست آمده از شبیه سازی گین تقویت کننده توزیع شده به خوبی به مقدار محاسبه شده نزدیک است. با اینکه تقویت کننده توزیع شده مورد نظر تنها یک طبقه دارد، نتایج نهایی، FOM بالایی در تکنولوژی 0.18 CMOS بدست داده اند. طرح نهایی، گینی برابر با 11.1 dB از تقریبا DC تا 23.6 GHz، نویز فیگر بین 3 dB تا 5.2 dB و بیشترین توان خروجی برابر با 7.1 dBm در نقطه فشردگی 1 dB بدست داده است.


1.      Percival, W., "Thermionic valve circuits", British patent,  Vol. 460562, No., (1937), 25-32.

2.      Mohammad-Taheri, M., "Self-equalized distributed amplifier for wide band optical transceivers", International Journal of Engineering-Transactions A: Basics,  Vol. 17, No. 3, (2004), 263-270.

3.      Chien, J.-C., Chen, T.-Y. and Lu, L.-H., "A 9.5-db 50-ghz matrix distributed amplifier in 0.18-/spl mu/m cmos", in VLSI Circuits,. Digest of Technical Papers. Symposium on, IEEE., (2006), 146-147.

4.      Hsiao, C.-Y., Su, T.-Y. and Hsu, S.S., "Cmos distributed amplifiers using gate–drain transformer feedback technique", IEEE Transactions on Microwave Theory and Techniques,  Vol. 61, No. 8, (2013), 2901-2910.

5.      Sinsoontornpong, P., Roopkom, I. and Worapishet, A., "Cascaded high-gain distributed amplifier configuration for enhanced gain-bandwidth product", in Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 10th International Conference on, IEEE., (2013), 1-5.

6.      Li, Y., Goh, W.-L., Tang, H., Liu, H., Deng, X. and Xiong, Y.-Z., "A 10 to 170 ghz distributed amplifier using 130-nm sige hbts", in Integrated Circuits (ISIC), International Symposium on, IEEE., (2016), 1-4.

7.      Mohammad-Taheri, M. and Elmasry, M.I., "Ultra-widband distributed amplifier using loss compensation technique on both input and output circuit", International Journal of Engineering-Transactions A: Basics,  Vol. 17, No. 4, (2004), 377-383.

8.      Arbabian, A. and Niknejad, A.M., "Design of a cmos tapered cascaded multistage distributed amplifier", IEEE Transactions on Microwave Theory and Techniques,  Vol. 57, No. 4, (2009), 938-947.

9.      Mesgari, B., Saeedi, S. and Jannesari, A., "A wideband low noise distributed amplifier with active termination", in Telecommunications (IST), 7th International Symposium on, IEEE., (2014), 170-174.

10.    Chang, J.-F. and Lin, Y.-S., "Dc 10.5 ghz complimentary metal oxide semiconductor distributed amplifier with rc gate terminal network for ultra-wideband pulse radio systems", IET Microwaves, Antennas & Propagation,  Vol. 6, No. 2, (2012), 127-134.

11.    Beheshti, I., Uysal, S., Farokhiyan, F. and Azar, F., "Design of broadband bandpass cascaded singlestage distributed amplifier in 0.13 μm cmos technology for uwb applications", in Business, Engineering and Industrial Applications (ISBEIA), IEEE Symposium on, IEEE. (2012), 33-36.

12.    Chen, P., Kao, J.-C., Huang, P.-C. and Wang, H., "A novel distributed amplifier with high gain, low noise and high output power in 0.18-µm cmos technology", in Microwave Symposium Digest (MTT), IEEE MTT-S International, IEEE., (2011), 1-4.

13.    Arbabian, A. and Niknejad, A.M., "A broadband distributed amplifier with internal feedback providing 660ghz gbw in 90nm cmos", in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, IEEE., (2008), 196-606.

14.    Chien, J.-C. and Lu, L.-H., "40-gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-$ mu { hbox {m}} $ cmos", IEEE Journal of Solid-State Circuits,  Vol. 42, No. 12, (2007), 2715-2725.

15.    Afshari, E., Bhat, H.S., Hajimiri, A. and Marsden, J.E., "Extremely wideband signal shaping using one-and two-dimensional nonuniform nonlinear transmission lines", Journal of Applied Physics,  Vol. 99, No. 5, (2006), 054901.

16.    Afshari, E., Bhat, H.S. and Hajimiri, A., "Ultrafast analog fourier transform using 2-d lc lattice", IEEE Transactions on Circuits and Systems I: Regular Papers,  Vol. 55, No. 8, (2008), 2332-2343.

17.    Lilis, G.N., Park, J., Lee, W., Li, G., Bhat, H.S. and Afshari, E., "Harmonic generation using nonlinear lc lattices", IEEE

Transactions on Microwave Theory and Techniques,  Vol. 58, No. 7, (2010), 1713-1723.

18.    Bhat, H.S. and Afshari, E., "Nonlinear constructive interference in electrical lattices", Physical Review E,  Vol. 77, No. 6, (2008), 066602.

19.    Momeni, O. and Afshari, E., "Electrical prism: A high quality factor filter for millimeter-wave and terahertz frequencies", IEEE Transactions on Microwave Theory and Techniques,  Vol. 57, No. 11, (2009), 2790-2799.

20.    Tousi, Y.M. and Afshari, E., "2-d electrical interferometer: A novel high-speed quantizer", IEEE Transactions on Microwave Theory and Techniques,  Vol. 58, No. 10, (2010), 2549-2561.

21.    Afshari, E., Bhat, H., Li, X. and Hajimini, A., "Electrical funnel: A broadband signal combining method", in Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, IEEE. Vol., No. Issue, (2006), 751-760.

22.    Mogheyse, A.H. and MiarNaimi, H., "Two-dimensional distributed amplifier by 2d-lc lattice", IET microwaves, antennas & propagation,  Vol. 10, No. 14, (2016), 1581-1590.

23.    Razavi, B. Design of Analog CMOS Integrated Circuits”, New York: McGraw-Hill, (2001).

24.    Amaya, R.E., Tarr, N. and Plett, C., "A 27 ghz fully integrated cmos distributed amplifier using coplanar waveguides", in Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE, IEEE. Vol., No. Issue, (2004), 193-196.

25.    Egels, M., Gaubert, J., Pannier, P. and Bourdel, S., "A 52-ghz 8.5-db traveling-wave amplifier in 0.13-$ mu $ m standard cmos process", IEEE Transactions on Microwave Theory and Techniques,  Vol. 56, No. 5, (2008), 1226-1233.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir