IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 821-829    Article in Press

downloaded Downloaded: 217   viewed Viewed: 1893

E. Bagheripour, A. R. Moghadassi and S. M. Hosseini
( Received: June 01, 2016 – Accepted in Revised Form: April 21, 2017 )

Abstract    Polyethersulfone (PES) based nanocomposite nanofiltration membrane was prepared by immersion precipitation method and casting solution technique using poly (acrylic acid) grafted-iron oxide nanoparticles (Fe3O4) as hydrophilic filler additives. For this purpose, iron oxide nanoparticles were modified by in situ polymerization of acrylic acid in aqueous solution by potassium persulfate as initiator and ethylene glycol as cross-linker. The grafted iron oxide nanoparticles were investigated by Fourier transforms infrared spectroscopy. The effect of different concentrations of grafted nanoparticles on the PES nanofiltration membrane performance and properties was investigated by scanning electron microscopy, water content, pure water flux, pore size, permeability flux, rejection and tensile strength. The water content was enhanced by incorporation of nanoparticles into the membrane matrix from 72.04 to 74.75%. It was observed that pure water flux (2.68 to 8.71 L/m2.h), mean pore size (2 to 6 nm) and permeability flux (0.8 to 4 L/m2.h) improved with loading of nanoparticles into the membrane matrix. The results revealed that utilization of grafted iron oxide nanoparticles in the membrane matrix led to improvement of rejection from 53.98 to 89.19% for membrane filled with 0.05% wt. nanoparticles. Also tensile strength increased slightly for sample 1 from 3874 to 4825 kPa for sample 4. Moreover, results showed more appreciation performance for the modified membrane containing PAA-Fe3O4 composite nanofillers compared to membrane filled with bare Fe3O4 nanoparticles.


Keywords    Nanofiltration; Hydrophilicity; Nanocomposite filler; permeability flux/salt rejection; pore size


چکیده    غشای نانوکامپوزیت نانوفیلتراسیون بر پایه پلی اترسولفون با تکنیک محلول پلیمری و غوطه وری با استفاده از پرکننده نانوذرات اکسید آهن لایه نشانی شده با پلی آکریلیک اسید به عنوان افزودنی آبدوست ساخته شد. برای این منظور، نانوذرات اکسید آهن با استفاده از پلیمریزاسیون سطحی آکریلیک اسید در محلول آبی حاوی پتاسیم پرسولفات به عنوان شروع کننده واکنش و اتیلن گلایکول به عنوان اتصال دهنده عرضی اصلاح شدند. نانوذرات اکسید آهن پوشش داده شده با طیف سنجی مادون قرمز مورد ارزیابی قرار گرفتند. اثر افزودن غلظت های مختلف از این نانوذرات بر خواص و عملکرد غشای نانوفیلتراسیون پلی اتر سولفون با استفاده از میکروسکوپ الکترونی، میزان محتوی آب، شار آب خالص، اندازه حفرات، شار عبوری، جداسازی و مقاومت مکانیکی مورد بررسی قرار گرفت. محتوای آب با افزودن نانوذرات در ساختار غشا از مقدار 04/72 درصد تا 75/74 درصد بهبود یافت. مقدار شار آب خالص از مقدار 68/2 تا 71/8 لیتر بر واحد سطح و زمان، افزایش یافت. اندازه حفرات از مقدار 2 نانو متر تا 6 نانو متر و شار آب عبوری از 0.8 تا 4 اضافه شدند. نتایج نشان داد استفاده از نانوذرات اکسید آهن پوشش داده شده با آکریلیک اسید در ساختار غشا باعث افزایش جداسازی از 98/53 درصد تا 19/89 درصد برای غشای دارای 05/0 درصد از نانوذرات شد. مقاومت مکانیکی به طور مستقیم از مقدار 3874 تا 4825 کیلوپاسکال افزایش یافت. به علاوه نتایج شار و درصد جداسازی بهتری برای غشای پر شده با نانوذرات پوشش داده شده نسبت به نانوذرات خالص مشاهده شد.


1.      Bagheripour, E., Moghadassi, A. and Hosseini, S., "Preparation of polyvinylchloride nanofiltration membrane: Investigation of the effect of thickness, prior evaporation time and addition of polyethylenglchol as additive on membrane performance and properties", International Journal of Engineering-Transactions C: Aspects,  Vol. 29, No. 3, (2016), 280-288.

2.      Luo, M.-L., Zhao, J.-Q., Tang, W. and Pu, C.-S., "Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles", Applied Surface Science,  Vol. 249, No. 1, (2005), 76-84.

3.      Ulbricht, M. and Belfort, G., "Surface modification of ultrafiltration membranes by low temperature plasma ii. Graft polymerization onto polyacrylonitrile and polysulfone", Journal of Membrane Science,  Vol. 111, No. 2, (1996), 193-215.

4.      Che, A.-F., Huang, X.-J. and Xu, Z.-K., "Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption", Journal of Membrane Science,  Vol. 366, No. 1, (2011), 272-277.

5.      Ulbricht, M., Matuschewski, H., Oechel, A. and Hicke, H.-G., "Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes", Journal of Membrane Science,  Vol. 115, No. 1, (1996), 31-47.

6.      Fei, Z.-D., Wan, L.-S., Wang, W.-M., Zhong, M.-Q. and Xu, Z.-K., "Thermo-responsive polyacrylonitrile membranes prepared with poly (acrylonitrile-g-isopropylacrylamide) as an additive", Journal of Membrane Science,  Vol. 432, (2013), 42-49.

7.      Huang, Z.-Q., Chen, Z.-Y., Guo, X.-P., Zhang, Z. and Guo, C.-L., "Structures and separation properties of pan− Fe3O4 ultrafiltration membranes prepared under an orthogonal magnetic field", Industrial & engineering chemistry research,  Vol. 45, No. 23, (2006), 7905-7912.

8.      Khan, A.A. and Baig, U., "Polyacrylonitrile-based organic-inorganic composite anion-exchange membranes: Preparation, characterization and its application in making ion-selective membrane electrode for determination of as (v)", Desalination,  Vol. 289, (2012), 21-26.

9.      Jung, H.-R., Ju, D.-H., Lee, W.-J., Zhang, X. and Kotek, R., "Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes", Electrochimica Acta,  Vol. 54, No. 13, (2009), 3630-3637.

10.    Zhang, G., Zhang, J., Wang, L., Meng, Q. and Wang, J., "Fouling mechanism of low-pressure hollow fiber membranes used in separating nanosized photocatalysts", Journal of Membrane Science,  Vol. 389, (2012), 532-543.

11.    Maximous, N., Nakhla, G., Wan, W. and Wong, K., "Preparation, characterization and performance of Al2O3/pes membrane for wastewater filtration", Journal of Membrane Science,  Vol. 341, No. 1, (2009), 67-75.

12.    Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B., "Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes", Separation and Purification Technology,  Vol. 90, (2012), 69-82.

13.    Soroko, I., Lopes, M.P. and Livingston, A., "The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part a. Effect of polymer/solvent/non-solvent system choice", Journal of Membrane Science,  Vol. 381, No. 1, (2011), 152-162.

14.    Soroko, I., Makowski, M., Spill, F. and Livingston, A., "The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part b: Analysis of evaporation step and the role of a co-solvent", Journal of Membrane Science,  Vol. 381, No. 1, (2011), 163-171.

15.    Wei, X.-Z., Zhu, L.-P., Deng, H.-Y., Xu, Y.-Y., Zhu, B.-K. and Huang, Z.-M., "New type of nanofiltration membrane based on crosslinked hyperbranched polymers", Journal of Membrane Science,  Vol. 323, No. 2, (2008), 278-287.

16.    Badruddoza, A., Tay, A., Tan, P., Hidajat, K. and Uddin, M., "Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies", Journal of Hazardous Materials,  Vol. 185, No. 2, (2011), 1177-1186.

17.    Madaeni, S., Zinadini, S. and Vatanpour, V., "Convective flow adsorption of nickel ions in pvdf membrane embedded with multi-walled carbon nanotubes and paa coating", Separation and Purification Technology,  Vol. 80, No. 1, (2011), 155-162.

18.    Sairam, M., Naidu, B.V.K., Nataraj, S.K., Sreedhar, B. and Aminabhavi, T.M., "Poly (vinyl alcohol)-iron oxide nanocomposite membranes for pervaporation dehydration of isopropanol, 1, 4-dioxane and tetrahydrofuran", Journal of Membrane Science,  Vol. 283, No. 1, (2006), 65-73.

19.    Sabbatini, P., Yrazu, F., Rossi, F., Thern, G., Marajofsky, A. and de Cortalezzi, M.F., "Fabrication and characterization of iron oxide ceramic membranes for arsenic removal", Water Research,  Vol. 44, No. 19, (2010), 5702-5712.

20.    Park, H. and Choi, H., "As (iii) removal by hybrid reactive membrane process combined with ozonation", Water Research,  Vol. 45, No. 5, (2011), 1933-1940.

21.    Daraei, P., Madaeni, S.S., Ghaemi, N., Monfared, H.A. and Khadivi, M.A., "Fabrication of pes nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: Comparison of mwcnt and paa modified MWCNT", Separation and Purification Technology,  Vol. 104, (2013), 32-44.

22.    Taniguchi, T., Kashiwakura, T., Inada, T., Kunisada, Y., Kasuya, M., Kohri, M. and Nakahira, T., "Preparation of organic/inorganic composites by deposition of silica onto shell layers of polystyrene (core)/poly [2-(n, n-dimethylamino) ethyl methacrylate](shell) particles", Journal of Colloid and Interface Science,  Vol. 347, No. 1, (2010), 62-68.

23.    Gao, B., Chen, Y. and Zhang, Z., "Preparation of functional composite grafted particles pdmaema/SiO2 and preliminarily study on functionality", Applied Surface Science,  Vol. 257, No. 1, (2010), 254-260.

24.    Li, Y. and Benicewicz, B.C., "Functionalization of silica nanoparticles via the combination of surface-initiated raft polymerization and click reactions", Macromolecules,  Vol. 41, No. 21, (2008), 7986-7992.

25.    Huang, Y., Liu, Q., Zhou, X., Perrier, S.b. and Zhao, Y., "Synthesis of silica particles grafted with well-defined living polymeric chains by combination of raft polymerization and coupling reaction", Macromolecules,  Vol. 42, No. 15, (2009), 5509-5517.

26.    You, Y.-Z., Kalebaila, K.K., Brock, S.L. and Oupicky, D., "Temperature-controlled uptake and release in pnipam-modified porous silica nanoparticles", Chemistry of Materials,  Vol. 20, No. 10, (2008), 3354-3359.

27.    Zhi, S.-H., Deng, R., Xu, J., Wan, L.-S. and Xu, Z.-K., "Composite membranes from polyacrylonitrile with poly (n, n-dimethylaminoethyl methacrylate)-grafted silica nanoparticles as additives", Reactive and Functional Polymers,  Vol. 86, No., (2015), 184-190.




28.    Roy, S., Ntim, S.A., Mitra, S. and Sirkar, K.K., "Facile fabrication of superior nanofiltration membranes from interfacially polymerized cnt-polymer composites", Journal of Membrane Science,  Vol. 375, No. 1, (2011), 81-87.

29.    Madaeni, S., Zinadini, S. and Vatanpour, V., "A new approach to improve antifouling property of pvdf membrane using in situ polymerization of paa functionalized TiO2 nanoparticles", Journal of Membrane Science,  Vol. 380, No. 1, (2011), 155-162.

30.    Han, R., Zhang, S., Liu, C., Wang, Y. and Jian, X., "Effect of naa zeolite performance", Journal of Membrane Science,  Vol. 345, (2009), 5-12.

31.    Hamid, N., Ismail, A.F., Matsuura, T., Zularisam, A., Lau, W.J., Yuliwati, E. and Abdullah, M.S., "Morphological and separation performance study of polysulfone/titanium dioxide (PSF/ TiO2) ultrafiltration membranes for humic acid removal", Desalination,  Vol. 273, No. 1, (2011), 85-92.

32.    Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R., "Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles", Desalination,  Vol. 219, No. 1-3, (2008), 48-56.

33.    Hegde, C., Isloor, A.M., Padaki, M. and Fun, H.-K., "Synthesis and performance characterization of PS-PPEES nanoporous membranes with nonwoven porous support", Arabian Journal of Chemistry,  Vol. 6, No. 3, (2013), 319-326.

34.    Gholami, A., Moghadassi, A., Hosseini, S., Shabani, S. and Gholami, F., "Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water", Journal of Industrial and Engineering Chemistry,  Vol. 20, No. 4, (2014), 1517-1522.

35.    Sivakumar, M., Mohan, D.R. and Rangarajan, R., "Studies on cellulose acetate-polysulfone ultrafiltration membranes: Ii. Effect of additive concentration", Journal of Membrane Science,  Vol. 268, No. 2, (2006), 208-219.

36.    Mobarakabad, P., Moghadassi, A. and Hosseini, S., "Fabrication and characterization of poly (phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination", Desalination,  Vol. 365, (2015), 227-233.

37.    Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V. and Zangeneh, H., "Preparation of a novel antifouling mixed matrix pes membrane by embedding graphene oxide nanoplates", Journal of Membrane Science,  Vol. 453, (2014), 292-301.

38.    Safarpour, M., Khataee, A. and Vatanpour, V., "Effect of reduced graphene oxide/ TiO2 nanocomposite with different molar ratios on the performance of pvdf ultrafiltration membranes", Separation and Purification Technology,  Vol. 140, (2015), 32-42.

39.    Machado, P., Habert, A. and Borges, C., "Membrane formation mechanism based on precipitation kinetics and membrane morphology: Flat and hollow fiber polysulfone membranes", Journal of Membrane Science,  Vol. 155, No. 2, (1999), 171-183.

40.    Borneman, Z., Zhang, W., Van den Boomgaard, T. and Smolders, C., "Semi-continuous protein fractionating using affinity cross-flow filtration", Desalination,  Vol. 144, No. 1-3, (2002), 295-299.

41.             Wu, G., Gan, S., Cui, L. and Xu, Y., "Preparation and characterization of PES/ TiO2 composite membranes", Applied Surface Science,  Vol. 254, No. 21, (2008), 7080-7086.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir