IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 887-894    Article in Press

downloaded Downloaded: 63   viewed Viewed: 1553

A. Toloei, M. Zarchi and B. Attaran
( Received: October 25, 2016 – Accepted in Revised Form: April 21, 2017 )

Abstract    This research explains airplane model with two vertical vibrations for airframe and landing gear system. The purpose of this work is to advance vibrational model for study of adjustable vibration absorber and to plan Proportional-Integration-Derivative approach for adapting semi active control force. The coefficients of this method are modified as stated by Bee multiobjective optimization using minimizing accelerations and impact forces as objective functions. The consequences implies that the semi active shock absorber system based on artificial Bee colony improves passengers and ride comfort and fatigue life of fuselage, shock strut and tyre by reducing movement of body, suspension system and impact load in an important way compared to passive performance during touchdown phase with various sink speeds and runway surfaces for robustness and sensitivity investigation of optimization performance.


Keywords    airplane model, PID approach, multiobjective optimization, semiactive vibration absorber, artificial Bee colony


چکیده    این تحقیق مدل هواپیما با دو ارتعاش عمودی برای بدنه و سیستم ارابه فرود را تشریح می کند. هدف این کار بسط مدل ارتعاشی برای مطالعه جاذب ارتعاش تنظیم پذیر و طراحی روش تناسبی-انتگرالی-مشتق گیر برای تطبیق نیروی کنترل نیمه فعال می باشد. ضرائب این تکنیک بر طبق بهینه سازی چندهدفه زنبورعسل با استفاده از مینیموم کردن شتاب ها و نیروهای ضربه به عنوان توابع هدف اصلاح می گردد. نتایج نشان می دهند که سیستم جاذب ضربه نیمه فعال بر مبنای کلونی زنبور عسل مصنوعی، راحتی مسافران و سواری و عمر خستگی بدنه، پایه ضربه و تایر را توسط کاهش جابجایی بدنه، سیستم تعلیق و بار ضربه بطور چشمگیری در مقایسه با عملکرد غیرفعال در طول فاز فرود با سرعت های نشست و سطوح باند فرود مختلف برای بررسی مقاومت و حساسیت عملکرد بهینه سازی بهبود می بخشد.


1.      Daniels, J.N., "A method for landing gear modeling and simulation with experimental validation",  (1996).

2.      Currey, N.S., "Aircraft landing gear design: Principles and practices, Aiaa,  (1988).

3.      Jocelyn, I., "An overview of landing gear dynamics",  (1999).

4.      Toloei, A.R., Zarchi, M. and Attaran, B., "Vibration control of aircraft semi-active suspension system using pid-bees technique", Simulation,  Vol. 99, No. 10, (2014).

5.      Toloei, A.R., Zarchi, M. and Attaran, B., "Application of active suspension system to reduce aircraft vibration using pid technique and bees algorithm", International Journal of Computer Applications,  Vol. 98, No. 6, (2014).

6.      Toloei, A., Aghamirbaha, E. and Zarchi, M., "Mathematical model and vibration analysis of aircraft with active landing gear system using linear quadratic regulator technique", International Journal of Engineering-Transactions B: Applications,  Vol. 29, No. 2, (2016), 137.

7.      Toloei, A., Zarchi, M. and Attaran, B., "Oscillation control of aircraft shock absorber subsystem using intelligent active performance and optimized classical techniques under sine wave runway excitation", International Journal of Engineering, TRANSACTIONS B: Applications,  Vol. 29, No. 8, (2016).

8.      Toloei, A., Zarchi, M. and Attaran, B., "Optimized fuzzy logic for nonlinear vibration control of aircraft semi-active shock absorber with input constraint", International Journal of Engineering, TRANSACTIONS C: Applications,  Vol. 29, No. 9, (2016).

9.      Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M., "The bees algorithm-a novel tool for complex optimisation", in Intelligent Production Machines and Systems-2nd I* PROMS Virtual International Conference (3-14 July 2006), sn., (2011).

10.    Pham, D., Ghanbarzadeh, A., Koc, E. and Otri, S., "Application of the bees algorithm to the training of radial basis function networks for control chart pattern recognition", in Proceedings of 5th CIRP international seminar on intelligent computation in manufacturing engineering (CIRP ICME’06), Ischia, Italy., (2006), 711-716.

11.    Pham, D., Otri, S., Ghanbarzadeh, A. and Koc, E., "Application of the bees algorithm to the training of learning vector quantisation networks for control chart pattern recognition", in Information and Communication Technologies,. ICTTA'06. 2nd, IEEE. Vol. 1, , (2006), 1624-1629.

12.    Pham, D., Koç, E. and Ghanbarzadeh, A., "Optimization of the weights of multi-layered perceptions using the bees algorithm, Proceedings of International Symposium on Intelligent Manufacturing Systems., (2006).

13.    Pham, D., Castellani, M. and Ghanbarzadeh, A., "Preliminary design using the bees algorithm", in Proceedings of eighth international conference on laser metrology, CMM and machine tool performance, LAMDAMAP, Euspen, Cardiff, UK. (2007), 420-429.

14.    Horta, L.G., Daugherty, R.H. and Martinson, V.J., "Modeling and validation of a navy a6-intruder actively controlled landing gear system",  (1999).

15.    Payne, B.W., Dudman, A.E. and Hockenhull, B.R.M., "Aircraft dynamic response to damaged and repaired runways", AGARD CP-326,  (1982).

16.    Wignot, J., Durup, P. and Gamon, M., "Design formulation and analysis of an active landing gear", Vol. I Analysis, AFFDL-TR-71-80,  Vol. 1, (1971).

17.    Bender, E., Berkman, E. and Bieber, M., "A feasibility study of active landing gear", Affdl-tr-70-126, US Air Force,  (1971), 8-13.

18.    McGehee, J.R. and Carden, H.D., "Analytical investigation of the landing dynamics of a large airplane with a load-control system in the main landing gear", (1979), DTIC Document.

19.    Ross, I. and Edson, R., "Application of active control landing gear technology to the a-10 aircraft",  (1983).

20.    Freymann, R. and Johnson, W.P., "Simulation of aircraft taxi testing on the agile shaker test facility", in DGLR The 2 nd International Symposium on Aeroelasticity and Structural Dynamics p 468-476(SEE N 86-30627 22-01)., (1985).

21.    Freymann, R., "An experimental-analytical routine for the dynamic qualification of aircraft operating on rough runway surfaces", AGARD Report,  Vol. 731, (1987).

22.    Freymann, I.R., "Actively damped landing gear system", AD-A239 914,  (1991), 16-22.

23.    Catt, T., Cowling, D. and Shepherd, A., "Active landing gear control for improved ride quality during ground roll", Smart Structures for Aircraft and Spacecraft (AGARD CP 531), Stirling Dynamics Ltd, Bristol,  (1993).

24.    Howell, W.E., Mcgehee, J.R., Daugherty, R.H. and Vogler, W.A., "F-106b airplane active control landing gear drop test performance",  (1990).

25.    Wang, H., Xing, J., Price, W. and Li, W., "An investigation of an active landing gear system to reduce aircraft vibrations caused by landing impacts and runway excitations", Journal of Sound and Vibration,  Vol. 317, No. 1, (2008), 50-66.

26.    Sivakumar, S. and Haran, A., "Mathematical model and vibration analysis of aircraft with active landing gears", Journal of Vibration and Control,  Vol. 21, No. 2, (2015), 229-245.

27.    Deb, K., "Multi-objective optimization using evolutionary algorithms, 2001", Chicheter, John-Wiley.,  (2001).

28.    Hui, L., Hongbin, G. and Dawei, C., "Application of high-speed solenoid valve to the semi-active control of landing gear", Chinese Journal of Aeronautics,  Vol. 21, No. 3, (2008), 232-240.

29.             Sivakumar, S. and Haran, A., "Aircraft random vibration analysis using active landing gears", Journal of Low Frequency Noise, Vibration and Active Control,  Vol. 34, No. 3, (2015), 307-322.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir