|

|
IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 887-894
|
Downloaded:
63 |
|
Viewed:
1553 |
|
|
NUMERICAL SURVEY OF VIBRATIONAL MODEL FOR THIRD AIRCRAFT BASED ON HR SUSPENSION SYSTEM ACTUATOR USING TWO BEE ALGORITHM OBJECTIVE FUNCTIONS
|
|
|
A. Toloei, M. Zarchi and B. Attaran
|
|
|
( Received:
October 25, 2016
– Accepted in Revised Form: April 21, 2017 )
|
|
|
Abstract
This
research
explains airplane model with two vertical vibrations for airframe and
landing gear system. The purpose of this work is
to advance vibrational model
for study of adjustable vibration absorber and to plan
Proportional-Integration-Derivative
approach for adapting semi active control
force. The coefficients of this method are modified as stated by
Bee
multiobjective optimization using minimizing accelerations and impact forces as
objective functions. The
consequences implies that the semi active shock
absorber system based on artificial Bee colony improves passengers and
ride
comfort and fatigue life of fuselage, shock strut and tyre by reducing movement
of body, suspension system and
impact load in an important way compared to
passive performance during touchdown phase with various sink speeds and
runway
surfaces for robustness and sensitivity
investigation of optimization performance.
|
|
|
Keywords
airplane model, PID approach, multiobjective optimization, semiactive vibration absorber, artificial Bee colony
|
|
|
چکیده
این تحقیق مدل
هواپیما با دو ارتعاش عمودی برای بدنه و سیستم ارابه فرود را تشریح می کند. هدف
این کار بسط مدل ارتعاشی برای مطالعه جاذب ارتعاش تنظیم پذیر و طراحی روش
تناسبی-انتگرالی-مشتق گیر برای تطبیق نیروی کنترل نیمه فعال می باشد. ضرائب این
تکنیک بر طبق بهینه سازی چندهدفه زنبورعسل با استفاده از مینیموم کردن شتاب ها و
نیروهای ضربه به عنوان توابع هدف اصلاح می گردد. نتایج نشان می دهند که سیستم جاذب
ضربه نیمه فعال بر مبنای کلونی زنبور عسل مصنوعی، راحتی مسافران و سواری و عمر
خستگی بدنه، پایه ضربه و تایر را توسط کاهش جابجایی بدنه، سیستم تعلیق و بار ضربه
بطور چشمگیری در مقایسه با عملکرد غیرفعال در طول فاز فرود با سرعت های نشست و
سطوح باند فرود مختلف برای بررسی مقاومت و حساسیت عملکرد بهینه سازی بهبود می
بخشد.
|
|
References
1. Daniels, J.N., "A method
for landing gear modeling and simulation with experimental
validation", (1996).
2. Currey,
N.S., "Aircraft landing gear design: Principles and practices, Aiaa, (1988).
3. Jocelyn,
I., "An overview of landing gear dynamics", (1999).
4. Toloei,
A.R., Zarchi, M. and Attaran, B., "Vibration control of aircraft
semi-active suspension system using pid-bees technique", Simulation, Vol. 99, No. 10, (2014).
5. Toloei,
A.R., Zarchi, M. and Attaran, B., "Application of active suspension system
to reduce aircraft vibration using pid technique and bees algorithm", International
Journal of Computer Applications,
Vol. 98, No. 6, (2014).
6. Toloei,
A., Aghamirbaha, E. and Zarchi, M., "Mathematical model and vibration
analysis of aircraft with active landing gear system using linear quadratic
regulator technique", International Journal of
Engineering-Transactions B: Applications, Vol. 29, No. 2, (2016), 137.
7. Toloei,
A., Zarchi, M. and Attaran, B., "Oscillation control of aircraft shock
absorber subsystem using intelligent active performance and optimized classical
techniques under sine wave runway excitation", International Journal of
Engineering, TRANSACTIONS B: Applications, Vol. 29, No. 8, (2016).
8. Toloei,
A., Zarchi, M. and Attaran, B., "Optimized fuzzy logic for nonlinear
vibration control of aircraft semi-active shock absorber with input
constraint", International Journal of Engineering, TRANSACTIONS C: Applications, Vol. 29, No. 9, (2016).
9. Pham,
D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M., "The
bees algorithm-a novel tool for complex optimisation", in Intelligent
Production Machines and Systems-2nd I* PROMS Virtual International Conference
(3-14 July 2006), sn., (2011).
10. Pham, D., Ghanbarzadeh, A., Koc, E. and
Otri, S., "Application of the bees algorithm to the training of radial
basis function networks for control chart pattern recognition", in
Proceedings of 5th CIRP international seminar on intelligent computation in
manufacturing engineering (CIRP ICME’06), Ischia, Italy., (2006), 711-716.
11. Pham, D., Otri, S., Ghanbarzadeh, A. and
Koc, E., "Application of the bees algorithm to the training of learning
vector quantisation networks for control chart pattern recognition", in
Information and Communication Technologies,. ICTTA'06. 2nd, IEEE. Vol. 1, ,
(2006), 1624-1629.
12. Pham, D., Koç, E. and Ghanbarzadeh, A.,
"Optimization of the weights of multi-layered perceptions using the bees
algorithm, Proceedings of International Symposium on Intelligent Manufacturing
Systems., (2006).
13. Pham, D., Castellani, M. and Ghanbarzadeh,
A., "Preliminary design using the bees algorithm", in Proceedings of
eighth international conference on laser metrology, CMM and machine tool
performance, LAMDAMAP, Euspen, Cardiff, UK. (2007), 420-429.
14. Horta, L.G., Daugherty, R.H. and Martinson,
V.J., "Modeling and validation of a navy a6-intruder actively controlled
landing gear system", (1999).
15. Payne, B.W., Dudman, A.E. and Hockenhull,
B.R.M., "Aircraft dynamic response to damaged and repaired runways", AGARD
CP-326, (1982).
16. Wignot, J., Durup, P. and Gamon, M.,
"Design formulation and analysis of an active landing gear", Vol.
I Analysis, AFFDL-TR-71-80, Vol.
1, (1971).
17. Bender, E., Berkman, E. and Bieber, M.,
"A feasibility study of active landing gear", Affdl-tr-70-126, US Air Force, (1971), 8-13.
18. McGehee, J.R. and Carden, H.D., "Analytical investigation of the
landing dynamics of a large airplane with a load-control system in the main
landing gear", (1979), DTIC Document.
19. Ross, I. and Edson, R., "Application of
active control landing gear technology to the a-10 aircraft", (1983).
20. Freymann, R. and Johnson, W.P.,
"Simulation of aircraft taxi testing on the agile shaker test
facility", in DGLR The 2 nd International Symposium on Aeroelasticity and
Structural Dynamics p 468-476(SEE N 86-30627 22-01)., (1985).
21. Freymann, R., "An
experimental-analytical routine for the dynamic qualification of aircraft
operating on rough runway surfaces", AGARD Report, Vol. 731, (1987).
22. Freymann, I.R., "Actively damped
landing gear system", AD-A239 914, (1991), 16-22.
23. Catt, T., Cowling, D. and Shepherd, A.,
"Active landing gear control for improved ride quality during ground
roll", Smart Structures for Aircraft and Spacecraft (AGARD CP 531), Stirling
Dynamics Ltd, Bristol, (1993).
24. Howell, W.E., Mcgehee, J.R., Daugherty, R.H.
and Vogler, W.A., "F-106b airplane active control landing gear drop test
performance", (1990).
25. Wang, H., Xing, J., Price, W. and Li, W.,
"An investigation of an active landing gear system to reduce aircraft
vibrations caused by landing impacts and runway excitations", Journal
of Sound and Vibration, Vol.
317, No. 1, (2008), 50-66.
26. Sivakumar, S. and Haran, A.,
"Mathematical model and vibration analysis of aircraft with active landing
gears", Journal of Vibration and Control, Vol. 21, No. 2, (2015), 229-245.
27. Deb, K., "Multi-objective optimization
using evolutionary algorithms, 2001", Chicheter, John-Wiley., (2001).
28. Hui, L., Hongbin, G. and Dawei, C.,
"Application of high-speed solenoid valve to the semi-active control of
landing gear", Chinese Journal of Aeronautics,
Vol. 21, No. 3, (2008), 232-240.
29. Sivakumar, S. and Haran, A., "Aircraft random
vibration analysis using active landing gears", Journal of Low Frequency Noise,
Vibration and Active Control,
Vol. 34, No. 3, (2015), 307-322.
|
|
|
|
|