Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 859-866    Article in Press

downloaded Downloaded: 86   viewed Viewed: 2173

  BERTRAND-NASH EQUILIBRIUM IN THE RETAIL DUOPOLY MODEL UNDER ASYMMETRIC COSTS
 
S. Melnikov
 
( Received: October 26, 2016 – Accepted in Revised Form: April 21, 2017 )
 
 

Abstract    In this paper, the Bertrand's price competition in the retail duopoly with asymmetric costs is analyzed. Retailers sell substitute products in the framework of the classical economic order quantity (EOQ) model with linear demand function. The market potential and competitor price are considered to be the bifurcation parameters of retailers. Levels of the barriers to market penetration depending on the bifurcation parameters are analyzed. The conditions of Bertrand-Nash equilibrium in parametric and trigonometric forms are found.

 

Keywords    EOQ model, retail duopoly model, Bertrand equilibrium, market potential, bifurcation parameter, return on logistics costs, barrier to entry

 

چکیده    در این مقاله، رقابت قیمت برتراند در انحصار خرده فروشی با هزینه های نامتقارن مورد تحلیل قرار گرفت. خرده فروشان محصولات جایگزین را در چارچوب مدل EOQ کلاسیک با تابع تقاضای خطی می فروشند. پتانسیل بازار و قیمت رقیب پارامترهای انشعاب از خرده فروشان در نظر گرفته می شود. سطوح موانع نفوذ در بازار بسته به پارامترهای انشعاب تجزیه و تحلیل می شوند. شرایط تعادل برتراند-نش در اشکال پارامتری و مثلثاتی یافت می شوند.

References   

1.      Chan, L.M., Shen, Z.M., Simchi-Levi, D. and Swann, J.L., Coordination of pricing and inventory decisions: A survey and classification, in Handbook of quantitative supply chain analysis. (2004), Springer.335-392.

2.      Abad, P.L., "Determining optimal selling price and lot size when the sup", Decision Sciences,  Vol. 19, No. 3, (1988), 622-630.

3.      Chen, C.-K. and Min, K.J., "An analysis of optimal inventory and pricing policies under linear demand", Asia-Pacific Journal of Operational Research,  Vol. 11, No. 2, (1994), 117-129.

4.      Otake, T. and Min, K.J., ". Inventory and pricing policies for a duopoly of substitute products", Inventory, Investment, and Pricing Policies for lot-Size Decision Makers,  (1996), 102-110.

5.      Whitin, T.M., "Inventory control and price theory", Management Science,  Vol. 2, No. 1, (1955), 61-68.

6.      Thomas, J., "Price-production decisions with deterministic demand", Management Science,  Vol. 16, No. 11, (1970), 747-750.

7.      Kunreuther, H. and Richard, J.F., "Optimal pricing and inventory decisions for non-seasonal items", Econometrica: Journal of the Econometric Society,  (1971), 173-175.

8.      Smith, N.R., Limón Robles, J. and Cárdenas-Barrón, L.E., "Optimal pricing and production master planning in a multiperiod horizon considering capacity and inventory constraints", Mathematical Problems in Engineering, (2009).

9.      Tripathi, R., "Economic order quantity for deteriorating items with non decreasing demand and shortages under inflation and time discounting", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 9, (2015), 1295-1302.

10.    Parsa, M., Mollaverdi-Esfahani, N., Alinaghiana, M. and Tavakkoli-Moghaddam, R., "Introducing the time value of money in a non-consignment vendor managed inventory model",International Journal of Engineering-Transactions B: Applications,,  Vol. 29, No. 5, (2016), 637-645.

11.    Moubed, M. and Mehrjerdi Zare, Y., "A hybrid dynamic programming for inventory routing problem in collaborative reverse supply chains", International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 10, (2016), 1412-1420.

12.    Zarei, A., Khademi Zare, H. and Nakhaei Nejad, M., "Integration of multi-period vehicle routing problem and economic selection of customers with the objective of optimizing distribution sales and discounts planning", International Journal of Engineering, Transactions C: Aspects,  Vol. 29, No. 12, (2016), 1704-1716.

13.    Sinha, S. and Sarmah, S., "Coordination and price competition in a duopoly common retailer supply chain", Computers & Industrial Engineering,  Vol. 59, No. 2, (2010), 280-295.

14.    Huang, Y., Huang, G.Q. and Newman, S.T., "Coordinating pricing and inventory decisions in a multi-level supply chain: A game-theoretic approach", Transportation Research Part E: Logistics and Transportation Review,  Vol. 47, No. 2, (2011), 115-129.

15.    Feng, Q. and Lu, L.X., "Supply chain contracting under competition: Bilateral bargaining vs. Stackelberg", Production and Operations Management,  Vol. 22, No. 3, (2013), 661-675.

16.    Alaei, S., Behravesh, M. and Karegar, N., "Analysis of production-inventory decisions in a decentralized supply chain", Prague Economic Papers,  Vol. 23, No. 2, (2014), 198-121.

17.    Modak, N.M., Panda, S. and Sana, S.S., "Pricing policy and coordination for a two-layer supply chain of duopolistic retailers and socially responsible manufacturer", International Journal of Logistics Research and Applications,  Vol. 19, No. 6, (2016), 487-508.

18.    Melnykov, S., "Modeling the effects of horizontal firm mergers under conditions of vertical market", Actual Problems of Economics,  No. 118, (2011), 250-255.

19.    Min, K.J., "Inventory and pricing policies under competition", Operations research letters,  Vol. 12, No. 4, (1992), 253-261.

20.    Sadjadi, S. and Bayati, M.F., "Two-tier supplier base efficiency evaluation via network dea: A game theory approach", International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 7, (2016), 931-938.

21.    Zhang, W.-B., "Synergetic economics: Time and change in nonlinear economics, Springer Science & Business Media,  Vol. 53,  (2013).

22.             Bain, J.S., "Barriers to new competition",  (1956).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir