|

|
IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 904-911
|
Downloaded:
101 |
|
Viewed:
1814 |
|
|
HYDRAULIC NETWORK MODELING TO ANALYZE STREAM FLOW EFFECTIVENESS ON HEAT TRANSFER PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGERS
|
|
|
S. Jafarmadar, A. A. Tahery and Sh. Khalilarya
|
|
|
( Received:
December 17, 2016
– Accepted in Revised Form: April 21, 2017 )
|
|
|
Abstract
In
this
article, stream flow effectivness is based on hydraulic network studied in the
shell-side of a shell and tube heat
exchange as a case study. For an appropriate
heat exchangers rating design to meet a specified duty, it's better to
consider
each stream flow separately. Using the hydraulic network principals, a set of
the correlations for calculating
different stream flow rates in the cross and
window area, leakage from tube-bundle and shell-baffle bypass are
suggested. By
the presented correlations, the actual flow direction and different stream flow
rates of shell-side fluid
for calculating of shell-side heat transfer and
pressure drop in different regions between adjacent baffles has been
taken into
account. Also, the effects of each stream flow in each baffle section on the
overall heat transfer
coefficient (HTC) and pressure drop could be investigated. The
comparison results of using these correlations and
results of published values,
like Bell-Delaware method and Kern correlations, is reasonable, which can be
used in the
optimum design of shell and tube heat exchangers with segmental
baffles. Also, according to the results, the cross flow
stream show much better
heat transfer performance with lower pressure drop behavior than window stream
at the same mass
flow rates. Average heat transfer performance of
window-section is almost 7-12% of overall heat transfer performance for
studied
case study.
|
|
|
Keywords
Shell-tube heat exchanger, Hydraulic networks, Stream flow, heat transfer coefficient (HTC), Pressure drop
|
|
|
چکیده
در این مقاله،
براساس اصول شبکه هیدرولیک جریانی تاثیر جریان سمت پوسته مبدلهای حرارتی پوسته و
لوله ای برای تحلیل نمونه مطالعاتی مبدل حرارتی پوسته و لوله مورد بررسی قرار
گرفت. برای طراحی مناسب Rating مبدلهای حرارتی و دستیابی به قابلیت حرارتی
معین بایستی تاثیر این جریانها بصورت مجزا مورد بررسی قرار گیرند. بعنوان یک راه
حل با استفاده از اصول شبکه هیدرولیک جریانی، مجموعه معادلاتی برای محاسبه دبی های
جریان مقاطع عرضی و پنجره جریان، نشتی لوله-باندل و جریان بای پس پوسته-لوله
پیشنهاد گردید. با بکارگیری معادلات پیشنهادی جهت واقعی جریان و دبی های جریان
سیال سمت پوسته برای محاسبه انتقال حرارت و افت فشار در مناطق مختلف بین بافل های
متناظر مدنظر قرار می گیرد. همچنین با این روش تاثیر جریان مقاطع مختلف بافل بر
روی ضریب انتقال حرارت و افت فشار کل سمت پوسته این مبدلها را می توان تعیین کرد.
مقایسه نتایج بدست آمده از این معادلات و نتایج روشهای دیگری، همچون روش Bell-Delaware و معادلات Kern، قابل قبول بوده و از این روش می توان در
طراحی بهینه مبدل های حرارتی پوسته و لوله ای استفاده کرد. همچنین براساس نتایج،
جریان مقطع عرضی عملکرد حرارتی بهتر و افت فشار کمتری نسبت به جریان مقطع پنجره در
دبی های جریان جرمی یکسان دارد. میانگین عملکرد حرارتی مقطع پنجره تقریبا 7-11% از
عملکرد حرارت کل نمونه مطالعاتی می باشد.
|
|
References
1. Taborek,
J., "Shell-and-tube heat exchangers: Single-phase flow", Handbook
of Heat Exchanger Design, Vol.,
No., (1983), 3.3.
2. Hewitt,
G., "Flow stream analysis method for segmentally baffled shell and tube
heat exchangers", HEDH, Begell House, New York, Vol., No., (2002).
3. Shah,
R.K. and Sekulic, D.P., "Fundamentals of heat exchanger design, John Wiley
& Sons, (2003).
4. Serth,
R.W. and Lestina, T., "Process heat transfer: Principles, applications and
rules of thumb, Academic Press, (2014).
5. Tinker,
T., "Shell side characteristics of shell and tube heat exchangers", General
Discussion on Heat Transfer,
Vol., No., (1951), 89-116.
6. Bell,
K.J., "Delaware method for shell-side design, Taylor & Francis, New
York, (1988).
7. Kern,
D.Q., "Process heat transfer, Tata McGraw-Hill Education, (1950).
8. Palen,
J. and Taborek, J., "Solution of shell side flow pressure drop and heat
transfer by stream analysis method", in Chemical Engineering Progress
Symposium Series. Vol. 65, No. Issue, (1969), 53-63.
9. Wills,
M., Johnston, D. and Harwell, A., "A new and accurate hand calculation
method for shell-side pressure drop and flow distribution", in 22nd
National Heat Transfer Conference, HTD. Vol. 36, No. Issue, (1984).
10. Tahery, A.A., Khalilarya, S. and Jafarmadar,
S., "Effectively designed ntw shell-tube heat exchangers with segmental
baffles using flow hydraulic network method", Applied Thermal Engineering, Vol. 120, No., (2017), 635-644.
11. Azar, R.T., Khalilarya, S., Jafarmadar, S.
and Ranjbar, F., "Modeling for shell-side heat transfer coefficient and
pressure drop of helical baffle heat exchangers", Heat Transfer Engineering, Vol. 38, No. 2, (2017), 265-277.
12. Parikshit, B., Spandana, K., Krishna, V.,
Seetharam, T. and Seetharamu, K., "A simple method to calculate shell side
fluid pressure drop in a shell and tube heat exchanger", International
Journal of Heat and Mass Transfer,
Vol. 84, No., (2015), 700-712.
13. Baghban, S.N., Moghiman, M. and Salehi, E.,
"Thermal analysis of shell-side flow of shell-and-tube heat exchanger
using experimental and theoretical methods", International Journal of
Engineering, Vol. 13, No. 1,
(2000), 15-26.
14. Nandan, A. and Singh, G., "Experimental study of
heat transfer rate in a shell and tube heat exchanger with air bubble injection
(technical note)", International Journal of
Engineering-Transactions B: Applications, Vol. 29, No. 8, (2016), 1160.
|
|
|
|
|