Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 912-919    Article in Press

downloaded Downloaded: 82   viewed Viewed: 1540

  DIFFERENTIAL FLATNESS METHOD BASED ON PRE-SET GUIDANCE AND CONTROL SUBSYSTEM DESIGN FOR A SURFACE TO SURFACE FLYING VEHICLE (TECHNICAL NOTE)
 
M. R. Taheri, R. Esmaelzadeh and J. Karimi
 
( Received: January 23, 2017 – Accepted in Revised Form: April 21, 2017 )
 
 

Abstract    The purpose of this paper is to design a guidance and control system and evaluate the performance of a sample surface‑to‑surface flying object based on preset guidance with a new prospective. In this study, the main presented idea is usage of unique property of governor differential equations in order to design and develop a controlled system. Thereupon a set of system output variables have been examined by specific tests as candidate of flattened variables. It is proved that the dynamism of the studying system has a property of differential flatness. This property as a basement for observing all of the system dynamic variables could be a perfect option to remove lack of observability of nonlinear systems. According to the information gained in the procedure of flatness demonstrating, there was a similarity between the control command generating in feedback linearization and flat systems tests. This similarity led to the application of the flat systems technique for the mentioned control method. The guidance and control system suggested in this paper is able to follow a set of specific reference trajectories in order to target different ranges. This ability without recalculating controller gains could be done only by having the rate of rotate of flying object in middle phase of maneuver. To validate the proposed FBC for the studied problem, another usual control method has been investigated. For this purpose, the linear quadratic regulator as straight forward control method in optimal control field has been applied. This feature reveals full compatibility between controller block and reference trajectory generator block.

 

Keywords    Nonlinear Systems, Flat differential technique, Preset guidance, Flatness Based Controller.

 

چکیده    اين مقاله با رويکردي جديد به طراحي سيستم هدايت و کنترل يک جسم پرنده سطح به سطح بر روي مسير هدايتي از پيش تعيين شده مي‌پردازد. ايده اصلي ارائه و بسط داده شده در اين نوشته مبتني بر استفاده از ويژگي تسطيح ديفرانسيلي ديناميک سيستم در روند توليد دستور کنترلي لازم براي تعقيب مسير هدايتي مرجع مي‌باشد. از اين‌رودسته‌اي از متغيرهاي خروجي سيستم به عنوان نامزد متغيرهاي مسطح، توسط آزمون‌هاي مطرح مورد بررسي و تحقيق قرار گرفته و اثبات مي‌شود که ديناميک سيستم مورد مطالعه داراي خاصيت تسطيح ديفرانسيلي مي‌باشد. اين ويژگي که خود سنگ بنايي براي مشاهده‌ي کليه متغيرهاي ديناميکي سيستم محسوب مي‌شود، مي‌تواند گزينه مناسبي در برطرف نمودن عدم رويت پذيري سيستم‌هاي غيرخطي مطرح باشد. بر اين اساس با تکيه بر اطلاعاتي که در مسير اثبات متغيرهاي مسطح به دست مي‌آيدمي‌توان تشابهي در توليد دستور کنترلي در روش خطي سازي پسخورد و آزمون‌هاي سيستم‌هاي مسطح يافت که منجر به استفاده از تکنيک سيستم‌هاي مسطح در روش کنترلي ياد شده مي‌شود. سيستم هدايت و کنترل پيشنهاد شده در اين مقاله قابليت تعقيب دسته خاصي از مسيرهاي مرجع هدايتي براي هدف قرار دادن بردهاي متفاوت را تنها به کمک در اختيار داشتن نرخ چرخش يک جسم پرنده در فاز مياني مانور و بدون نياز به محاسبه مجدد ضرايب بهره کنترل‌کننده دارا مي‌باشد. اين ويژگي بيان کننده قابليت انطباق کامل بلوک کنترل‌کننده با بلوک توليد کننده مسير هدايتي در فرم‌هاي يکسان مسير مرجع مي‌باشد.

References   

1.      Shima, T., Idan, M. and Golan, O.M., "Sliding-mode control for integrated missile autopilot guidance", Journal of Guidance, Control, and Dynamics,  Vol. 29, No. 2, (2006), 250-260.

2.      Li, C., Jing, W., Wang, H. and Qi, Z., "Development of flight control system for 2d differential geometric guidance and control problem", Aircraft Engineering and Aerospace Technology,  Vol. 79, No. 1, (2007), 60-68.

 

 

 

 

3.      Li, C., Jing, W., Wang, H. and Qi, Z., "Application of 2d differential geometric guidance to tactical missile interception", in Aerospace Conference, IEEE, (2006), 6-15.

4.      Graichen, K. and Zeitz, M., "Feedforward control design for finite-time transition problems of nonlinear systems with input and output constraints", IEEE Transactions on Automatic Control,  Vol. 53, No. 5, (2008), 1273-1278.

5.      Brown, A.S. and Hardiman, D.F., "Applications of nonlinear estimation techniques", COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,  Vol. 28, No. 2, (2009), 286-303.

6.      Tang, C.P., "Differential flatness-based kinematic and dynamic control of a differentially driven wheeled mobile robot", in Robotics and Biomimetics (ROBIO), IEEE International Conference on, IEEE., (2009), 2267-2272.

7.      MORIO, V., "Design and development of an autonomous guidance law by flatness approach",  Vol., No.

8.      Louembet, C., Cazaurang, F., Zolghadri, A., Charbonnel, C. and Pittet, C., "Design of algorithms for satellite slew manoeuver by flatness and collocation", in American Control Conference,. ACC'07, IEEE., (2007), 3168-3173.

9.      Toloei, A., Aghamirbaha, E. and Zarchi, M., "Mathematical model and vibration analysis of aircraft with active landing gear system using linear quadratic regulator technique", International Journal of Engineering-Transactions B: Applications,  Vol. 29, No. 2, (2016), 137-144.

10.    Toloei, A., Zarchi, M. and Attaran, B., "Oscillation control of aircraft shock absorber subsystem using intelligent active performance and optimized classical techniques under sine wave runway excitation", International Journal of Engineering, Transactions C: Aspects,  Vol. 30, No. 3, (2016), 1167-1174.

11.    Toloei, A.R., Zarchi, M. and Attaran, B., "Optimized fuzzy logic for nonlinear vibration control of aircraft semi-active shock absorber with input constraint", International Journal of Engineering, Transactions C: Aspects,  Vol. 31, No. 3, (2016), 1300-1306.

12.    Fliess, M., Levine, J., Martin, P. and Rouchon, P., "On differentially flat nonlinear systems", in IFAC SYMPOSIA SERIES., (1992), 159-163.

13.    Fliess, M., LÚvine, J., Martin, P. and Rouchon, P., "Flatness and defect of non-linear systems: Introductory theory and examples", International Journal of Control,  Vol. 61, No. 6, (1995), 1327-1361.

14.    Eshelby, M.E., "Aircraft performance: Theory and practice, American Institute of Aeronautics and Astronautics,  (2000).

15.    Taheri, M.R., Soleymani, A., Toloei, A. and Vali, A.R., "Performance evaluation of a high-altitude launch technique to orbit using atmospheric properties", nternational Journal of Engineering, Transactions A: Basics,  Vol. 20, No. 1, (2013), 333-340.

16.    Sutton, F.B. and Martin, A., "Naca research memorandum",  (1951).

17.    Hagenmeyer, V., "Robust nonlinear tracking control based on differential flatness", at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik,  Vol. 50, No. 12/2002, (2002), 615-622.

18.             Donald, K., "Optimal control theory: An introduction", Mineola, NY: Dover Publications, Inc,  (1970).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir