IJE TRANSACTIONS C: Aspects Vol. 30, No. 6 (June 2017) 876-886    Article in Press

downloaded Downloaded: 145   viewed Viewed: 1850

P. Fattahi, M. Tanhatalab and M. Bashiri
( Received: December 24, 2016 – Accepted in Revised Form: April 21, 2016 )

Abstract    In this study, a two echelons supply chain system in which a supplier is producing perishable product and distribute it to multiple customers is considered. By allowing lateral transshipment mechanism, it is also possible to deliver products to some customers in some periods in bulk, then customers using their own vehicle to transship goods between each other seeking further reduction in the overall cost. The aim here is minimizing the production, inventory carrying cost, and distribution as the first objective, and transshipment cost as the second objective, which is contrary objectives, without facing any shortage anywhere in the chain during the planning horizon. This problem is formulated as a bi-objectives mixed integer programming (BOMIP), and then a proper Pareto front as a set of multiple decision alternatives is provided using NSGAII and NRGA approach. Novelty of this research is providing a bi-objectives mathematical modeling of perishable product inventory routing with production and transshipment (BO-P-PIRPT) that help the decision maker to choose the best mixture of routing and transshipment.


Keywords    Production inventory routing problem, IRP, mixed integer-programming, perishable, non-dominant sorting genetic algorithm


چکیده    در این مطالعه، يك زنجیره تامین دو سطحي که در آن یک عرضه كننده محصولات فاسد شدنی تولید مي نمايد و آن را بين مشتریان متعدد توزیع مي نمايد مد نظر است. با مجاز بودن جابجايي جانبي، امكان حمل كالا بطور انبوه به بخشي از مشتريان توسط خودروي حمل عرضه كننده و سپس خود مشتريان كالا را بين يكديگر با خودروهاي خود در مقادير كوچكتر توزيع نمايند، فراهم مي گردد، بطوريكه كل هزينه هاي زنجيره كاهش يابد. هدف در اينجا كاهش هزينه هاي توليد، نگهداري موجودي و هزينه هاي توزيع به عنوان تابع هدف اول و هزينه هاي جابجايي جانبي به عنوان هدف دوم است بطوريكه هيچ كمبودي براي هيچ كدام از اعضاي زنجيره در هيچ دوره اي رخ ندهد. اين مسئله بصورت يك برنامه ريزي عدد صحيح مختلط دو هدفه مدلسازي شده (BOMIP) و توسط الگوريتم هاي NSGAII و NRGA يك جبهه پارتو مناسب به عنوان مجموعه جواب هاي قابل قبول ارايه شده است. نوآوري مقاله تهيه يك مدل دو هدفه براي مسئله مسيريابي موجودي براي توليد كالاي فاسد شدني با مجاز بودن جابجايي جانبي (BO-P-PIRPT) مي باشد كه به انتخاب بهترين تركيب مسيريابي و جابجايي جانبي كمك مي كند.


1.      Paterson, C., Kiesmüller, G., Teunter, R. and Glazebrook, K., "Inventory models with lateral transshipments: A review", European Journal of Operational Research,  Vol. 210, No. 2, (2011), 125-136.

2.      Coelho, L.C., Cordeau, J.-F. and Laporte, G., "The inventory-routing problem with transshipment", Computers & Operations Research,  Vol. 39, No. 11, (2012), 2537-2548.

3.      Federgruen, A., Prastacos, G. and Zipkin, P.H., "An allocation and distribution model for perishable products", Operations Research,  Vol. 34, No. 1, (1986), 75-82.

4.      Azuma, R.M., Coelho, G.P. and Von Zuben, F.J., "Evolutionary multi-objective optimization for the vendor-managed inventory routing problem", IEEE Congress of Evolutionary Computation (CEC), (2011), 1457-1464.

5.      Geiger, M.J. and Sevaux, M., The biobjective inventory routing problem–problem solution and decision support, in Network optimization. (2011), Springer. 365-378.

6.      Andersson, H., Hoff, A., Christiansen, M., Hasle, G. and Lokketangen, A., "Industrial aspects and literature survey: Combined inventory management and routing", Computers & Operations Research,  Vol. 37, No. 9, (2010), 1515-1536.

7.      Coelho, L.C., Cordeau, J.-F. and Laporte, G., "Thirty years of inventory routing", Transportation Science,  Vol. 48, No. 1, (2013), 1-19.

8.      Setak, M. and Daneshfar, L., "An inventory model for deteriorating items using vendor-managed inventory policy", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 7, (2014), 1081-1090.

9.      Sahraeian, R. and Zabihi, F., "Trucks scheduling in a multi-product cross docking system with multiple temporary storages and multiple dock doors", International Journal of Engineering-Transactions B: Applications,  Vol. 29, No. 11, (2016), 1595-1603.

10.    Jain, M., Sharma, G. and Rathore, S., "Economic production quantity models with shortage, price and stock-dependent demand for deteriorating items", International Journal of Engineering Transactions A Basics,  Vol. 20, No. 2, (2007), 159-164.

11.    Shaabani, H. and Kamalabadi, I.N., "An efficient population-based simulated annealing algorithm for the multi-product multi-retailer perishable inventory routing problem", Computers & Industrial Engineering,  Vol. 99, (2016), 189-201.

12.    Al Shamsi, A., Al Raisi, A. and Aftab, M., Pollution-inventory routing problem with perishable goods, in Logistics operations, supply chain management and sustainability. (2014), Springer. 585-596.

13.    Mirzaei, S. and Seifi, A., "Considering lost sale in inventory routing problems for perishable goods", Computers & Industrial Engineering,  Vol. 87, (2015), 213-227.

14.    Devapriya, P., Ferrell, W. and Geismar, N., "Integrated production and distribution scheduling with a perishable product", European Journal of Operational Research,  Vol. 259, No. 3, (2017), 906-916.

15.    Rahimi, M., Baboli, A. and Rekik, Y., "Sustainable inventory routing problem for perishable products by considering reverse logistic", IFAC-PapersOnLine,  Vol. 49, No. 12, (2016), 949-954.

16.    Huber, S., Geiger, M.J. and Sevaux, M., "Simulation of preference information in an interactive reference point‐based method for the bi‐objective inventory routing problem", Journal of Multi‐Criteria Decision Analysis,  Vol. 22, No. 1-2, (2015), 17-35.

17.    Niakan, F. and Rahimi, M., "A multi-objective healthcare inventory routing problem; a fuzzy possibilistic approach", Transportation Research Part E: Logistics and Transportation Review,  Vol. 80, (2015), 74-94.

18.    Rahimi, M., Baboli, A. and Rekik, Y., "A bi-objective inventory routing problem by considering customer satisfaction level in context of perishable product", in Computational Intelligence in Production and Logistics Systems (CIPLS), IEEE Symposium on, (2014), 91-97.

19.    Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., "A fast and elitist multiobjective genetic algorithm: NSGA-ii", IEEE Transactions on Evolutionary Computation,  Vol. 6, No. 2, (2002), 182-197.

20.    Abdelmaguid, T.F. and Dessouky, M.M., "A genetic algorithm approach to the integrated inventory-distribution problem", International Journal of Production Research,  Vol. 44, No. 21, (2006), 4445-4464.

21.    Moin, N.H., Salhi, S. and Aziz, N., "An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem", International Journal of Production Economics,  Vol. 133, No. 1, (2011), 334-343.

22.    Al Jadaan, O., Rajamani, L. and Rao, C., "Non-dominated ranked genetic algorithm for solving multi-objective optimization problems: NRGA", Journal of Theoretical & Applied Information Technology,  Vol. 4, No. 1, (2008).

23.    Archetti, C., Bertazzi, L., Laporte, G. and Speranza, M.G., "A branch-and-cut algorithm for a vendor-managed inventory-routing problem", Transportation Science,  Vol. 41, No. 3, (2007), 382-391.

24.    Jolai, F., Asefi, H., Rabiee, M. and Ramezani, P., "Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem", Scientia Iranica,  Vol. 20, No. 3, (2013), 861-872.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir