|

|
IJE TRANSACTIONS B: Applications Vol. 30, No. 8 (August 2017) 1160-1169
|
Downloaded:
189 |
|
Viewed:
1904 |
|
|
A ROBUST RELIABLE FORWARD-REVERSE SUPPLY CHAIN NETWORK DESIGN MODEL UNDER PARAMETER AND DISRUPTION UNCERTAINTIES
|
|
|
M. Fazli-Khalaf and A. Hamidieh
|
|
|
( Received:
August 09, 2016
– Accepted in Revised Form: July 07, 2017 )
|
|
|
Abstract
Social
responsibility is a key factor that could
result in success and achieving great benefits for supply
chains.
Responsiveness and reliability are important social responsibility measures for
consumers and all stakeholders
that strategists and company managers should be concerned
about them in long-term planning horizon. Although, presence
of uncertainties
as an intrinsic part of supply chains could adversely affect the best set plans
by field experts.
Accordingly, uncertainty of parameters and uncertainties
caused by disruptions should be regarded in planning process of
networks to
prevent unpredictable negative consequences of such uncertainties for all
echelons of supply chain. Based on
enumerated matters, the aim of this paper is
to design a reliable multi-echelon closed loop supply chain network model
that
maximizes social responsibility while minimizing fixed establishing and
variable processing costs of network
design. To cope with uncertainty of
parameters, stochastic programming is applied and an effective reliable
modelling
method is employed to appropriately control unpleasant economic
impacts of disruptions. Notably, an efficient robust
programming method is
applied to give the decision makers the capability to control level of
risk-averseness of
decisions while modelling uncertain parameters. Finally, the
proposed model is solved and its outputs are analyzed on
the basis of generated
test problems which shows correct performance and applicability of extended model
in real world
problems.
|
|
|
Keywords
supply chain, reliability, social responsibility, robustness, stochastic programming
|
|
|
چکیده
مسئولیت اجتماعی یک فاکتور کلیدی است که منجر به دستیابی به موفقیت و سود
زیاد برای زنجیرههای تامین میگردد. پاسخگویی و پایایی[ah1] ، سنجههای
مهم مسئولیت اجتماعی برای تمامی سهام داران و مشتریان میباشند که استراتژیستها و
مدیران سازمانها باید در مورد آنها در برنامهریزی بلند مدت نگران باشند. گرچه،
وجود عدم قطعیتها به عنوان یکی از اجزای جداناپذیر زنجیرههای تامین میتواند به
صورت معکوس، بهترین برنامههای تنظیم شده توسط خبرههای حوزه را تحت تاثیر قرار
دهد. بر طبق آنچه گفته شد، عدم قطعیت پارامترها و عدم قطعیت ایجاد شده توسط
اختلالات باید در فرایند برنامهریزی شبکهها مدنظر قرار گیرد تا از نتایج منفی
غیرقابل پیشبینی مربوط به عدم قطعیتهای ذکر شده، برای تمامی سطوح زنجیرههای
تامین جلوگیری گردد. بر اساس موارد ذکر شده، هدف این مقاله، طراحی یک مدل شبکه
زنجیره تامین حلقهبسته پایای چند سطحی میباشد که مسئولیت اجتماعی را در کنار
کمینه سازی هزینههای ثابت احداث و متغیر عملیاتی طراحی شبکه، بیشینه مینماید.
برای مواجهه با عدم قطعیت پارامترها، برنامه ریزی احتمالی به کار گرفته شده است و
از یک رویکرد کارای مدلسازی پایا استفاده شده است تا بتوان به طور مناسب اثرات
نامطلوب اختلالات را کنترل نمود. لازم به ذکر است که از یک رویکرد کارای برنامهریزی
استوار استفاده شده است تا بتوان قابلیت کنترل سطح ریسک گریزی تصمیمات زمانی که
پارامترها به صورت غیرقطعی مدلسازی میشوند را به تصمیم گیرندگان داد. در نهایت،
مدل توسعه داده شده حل شده و خروجیهای آن بر اساس مسائل نمونه تولید شده آنالیز
شدهاند که عملکرد صحیح و قابلیت به کارگیری مدل توسعه داده شده در مسائل واقعی را
نشان میدهد.
|
|
References
1. Kannan, G., Sasikumar, P. and
Devika, K., "A genetic algorithm approach for solving a closed loop supply
chain model: A case of battery recycling", Applied Mathematical Modelling, Vol. 34, No. 3, (2010), 655-670.
2. Özceylan, E. and Paksoy, T., "A mixed
integer programming model for a closed-loop supply-chain network", International
Journal of Production Research,
Vol. 51, No. 3, (2013), 718-734.
3. Pishvaee, M.S. and Torabi, S.A., "A
possibilistic programming approach for closed-loop supply chain network design
under uncertainty", Fuzzy Sets and Systems, Vol. 161, No. 20, (2010), 2668-2683.
4. Vahdani, B., Tavakkoli-Moghaddam, R. and
Jolai, F., "Reliable design of a logistics network under uncertainty: A
fuzzy possibilistic-queuing model", Applied Mathematical Modelling, Vol. 37, No. 5, (2013), 3254-3268.
5. Torabi, S., Namdar, J., Hatefi, S. and
Jolai, F., "An enhanced possibilistic programming approach for reliable
closed-loop supply chain network design", International Journal of
Production Research, Vol. 54,
No. 5, (2016), 1358-1387.
6. Snyder, L.V. and Daskin, M.S.,
"Reliability models for facility location: The expected failure cost
case", Transportation Science,
Vol. 39, No. 3, (2005), 400-416.
7. Peng, P., Snyder, L.V., Lim, A. and Liu,
Z., "Reliable logistics networks design with facility disruptions", Transportation
Research Part B: Methodological,
Vol. 45, No. 8, (2011), 1190-1211.
8. Vahdani, B., Tavakkoli-Moghaddam, R.,
Modarres, M. and Baboli, A., "Reliable design of a forward/reverse logistics
network under uncertainty: A robust-m/m/c queuing model", Transportation
Research Part E: Logistics and Transportation Review, Vol. 48, No. 6, (2012), 1152-1168.
9. Hatefi, S., Jolai, F., Torabi, S. and
Tavakkoli-Moghaddam, R., "Reliable design of an integrated forward-revere
logistics network under uncertainty and facility disruptions: A fuzzy
possibilistic programing model", KSCE Journal of Civil Engineering, Vol. 19, No. 4, (2015), 1117-1128.
10. Fereiduni, M. and Hamzehee, M., "A
p-robust model in humanitarian logistics in a non-neutral political
environment", Uncertain Supply Chain Management, Vol. 4, No. 4, (2016), 249-262.
11. Drezner, Z., "Heuristic solution
methods for two location problems with unreliable facilities", Journal
of the Operational Research Society,
(1987), 509-514.
12. Lim, M., Daskin, M.S., Bassamboo, A. and
Chopra, S., "A facility reliability problem: Formulation, properties, and
algorithm", Naval Research Logistics (NRL),
Vol. 57, No. 1, (2010), 58-70.
13. Wang, J. and Shu, Y.-F., "A
possibilistic decision model for new product supply chain design", European
Journal of Operational Research,
Vol. 177, No. 2, (2007), 1044-1061.
14. Qin, X.-S., Huang, G.H., Zeng, G.-M.,
Chakma, A. and Huang, Y., "An interval-parameter fuzzy nonlinear
optimization model for stream water quality management under uncertainty",
European
Journal of Operational Research,
Vol. 180, No. 3, (2007), 1331-1357.
15. Fatrias, D. and Shimizu, Y.,
"Possibilistic programming model for fuzzy multi-objective periodic review
inventory in two-stage supply chain", International Journal of Applied Decision
Sciences, Vol. 7, No. 2, (2014),
168-189.
16. Vahdani, B., Tavakkoli-Moghaddam, R., Jolai,
F. and Baboli, A., "Reliable design of a closed loop supply chain network
under uncertainty: An interval fuzzy possibilistic chance-constrained
model", Engineering Optimization,
Vol. 45, No. 6, (2013), 745-765.
17. Hatefi, S.M., Jolai, F., Torabi, S.A. and
Tavakkoli-Moghaddam, R., "A credibility-constrained programming for
reliable forward–reverse logistics network design under uncertainty and
facility disruptions", International Journal of Computer Integrated
Manufacturing, Vol. 28, No. 6,
(2015), 664-678.
18. Lee, D.-H., Dong, M. and Bian, W., "The
design of sustainable logistics network under uncertainty", International
Journal of Production Economics,
Vol. 128, No. 1, (2010), 159-166.
19. Pishvaee, M.S., Razmi, J. and Torabi, S.A.,
"Robust possibilistic programming for socially responsible supply chain
network design: A new approach", Fuzzy Sets and Systems, Vol. 206, (2012), 1-20.
20. Erol, I., Sencer, S. and Sari, R., "A
new fuzzy multi-criteria framework for measuring sustainability performance of
a supply chain", Ecological Economics, Vol. 70, No. 6, (2011), 1088-1100.
21. Kamali, H., Sadegheih, A., Vahdat-Zad, M.
and Khademi-Zare, H., "Deterministic and metaheuristic solutions for
closed-loop supply chains with continuous price decrease", International
Journal of Engineering-Transactions C: Aspects, Vol. 27, No. 12, (2014), 1897-1904.
22. Pishvaee, M.S. and Khalaf, M.F., "Novel
robust fuzzy mathematical programming methods", Applied Mathematical Modelling, Vol. 40, No. 1, (2016), 407-418.
23. Soyster, A.L., "Convex programming with
set-inclusive constraints and applications to inexact linear programming",
Operations
Research, Vol. 21, No. 5,
(1973), 1154-1157.
24. Ben-Tal, A. and Nemirovski, A., "Robust
convex optimization", Mathematics of Operations Research, Vol. 23, No. 4, (1998), 769-805.
25. El Ghaoui, L., Oustry, F. and Lebret, H.,
"Robust solutions to uncertain semidefinite programs", SIAM
Journal on Optimization, Vol. 9,
No. 1, (1998), 33-52.
26. Inuiguchi, M. and Sakawa, M., "Robust
optimization under softness in a fuzzy linear programming problem", International
Journal of Approximate Reasoning,
Vol. 18, No. 1-2, (1998), 21-34.
27. Mulvey, J.M., Vanderbei, R.J. and Zenios,
S.A., "Robust optimization of large-scale systems", Operations
Research, Vol. 43, No. 2,
(1995), 264-281.
28. Leung, S.C., Tsang, S.O., Ng, W.L. and Wu,
Y., "A robust optimization model for multi-site production planning
problem in an uncertain environment", European Journal of Operational Research, Vol. 181, No. 1, (2007), 224-238.
29. Pan , F. and Nagi,
R., "Robust supply chain design under
uncertain demand
in agile manufacturing", Computers & Operations Research, Vol. 37, No. 4, (2010), 668-683.
30. Pishvaee, M.S., Rabbani, M. and Torabi,
S.A., "A robust optimization approach to closed-loop supply chain network
design under uncertainty", Applied Mathematical Modelling, Vol. 35, No. 2, (2011), 637-649.
31. Ben-Tal,
A. and Nemirovski, A., "Robust solutions of uncertain linear
programs", Operations Research Letters,
Vol. 25, No. 1, (1999), 1-13.
|
|
|
|
|