|

|
IJE TRANSACTIONS B: Applications Vol. 30, No. 8 (August 2017) 1270-1278
|
Downloaded:
54 |
|
Viewed:
1371 |
|
|
NUMERICAL STUDY OF PURE ELECTROCONVECTION AND COMBINED ELECTRO-THERMO-CONVECTION IN HORIZONTAL CHANNELS
|
|
|
R. Gannoun, W. Hassen and M. I. Elkhazen and M. N. Borjini
|
|
|
( Received:
March 16, 2017
– Accepted in Revised Form: July 07, 2017 )
|
|
|
Abstract
Electrohydrodynamic
effect
on natural convection in horizontal channels is investigated from a
numerical point of view. The EHD effect is induced
by narrow strip electrodes
placed at the bottom wall of the channel. The channel is subjected in a first
stage only to
the electric forces, and in a second stage to the simultaneous
action of a temperature gradient and an electric field.
The interactions
between electric field, flow field and temperature field are analyzed. It can
be concluded that charge
density distribution, flow pattern and temperature
distribution are substantially affected by the arrangement of the
electrodes;
in fact four different arrangement were treated. The effect of pure
electroconvection on charge density
distribution and on flow pattern was
studied. A periodic flow corresponding to particular values of electric
Rayleigh
was observed, then the impact of combined electro-thermo convection on heat transfer
was undertaken in a second step and
it was noted that the optimum arrangement of the electrodes provides an increase in heat
transfer of up to 13%. The
effect of the applied electric forces is also studied
in order to highlight the importance of putting compromise between
the supplied
voltage and arrangement of the electrodes. Finally, a study of optimized
configuration of electrodes was
achieved.
|
|
|
Keywords
Heat transfer, Electro-Hydro-Dynamic, Electro-Thermo-Convection, Numerical simulation
|
|
|
چکیده
اثر
الکتروهیدرودینامیکی (EHD) بر روی
گرایش طبیعی در کانالهای افقی از دیدگاه عددی بررسی شده است. اثر EHD توسط الکترودهای نوار باریک قرار داده شده در دیوار
پایین کانال ایجاد میشود. کانال در مرحله اول تنها به نیروهای الکتریکی و در
مرحله دوم به اثر همزمان یک گرادیان درجه حرارت و یک میدان الکتریکی اعمال میشود.
تعاملات بین میدان الکتریکی، میدان جریان و میدان دما تجزیه و تحلیل میشود. میتوان
چنین نتیجه گرفت که توزیع چگالی شار، الگوی جریان و توزیع دما به طور قابل ملاحظهای
از آرایش الکترودها تأثیر میپذیرند. در واقع، چهار روش مختلف الکترود تحت مطالعه قرار
گرفتند. اثر الکتروشیمیایی خالص بر توزیع تراکم شارژ و الگوی جریان مطالعه شده
است. یک جریان دورهای که مربوط به مقادیر ویژه الکتریکی رایلی بود، مشاهده شد.
اثر ترکیب الکتریکی حرارتی در انتقال حرارت در مرحله دوم بررسی و مشاهده شد که
ترتیب الکترودهای بهینه افزایش انتقال حرارت تا 13٪ را فراهم میکند. اثر نیروهای الکتریکی اعمال شده نیز
مورد توجه قرار گرفته است تا اهمیت مصالحه بین ولتاژ تامین شده و تنظیم الکترود را
برجسته نماید. در نهایت، مطالعه پیکربندی الکترود بهینه شده به دست آمد.
|
|
References
1. Seyed-Yagoobi, J.,
"Electrohydrodynamic pumping of dielectric liquids", Journal
of Electrostatics, Vol. 63, No.
6, (2005), 861-869.
2. Atten,
P. and Seyed-Yagoobi, J., "Electrohydrodynamically induced dielectric
liquid flow through pure conduction in point/plane geometry", IEEE
Transactions on Dielectrics and Electrical Insulation, Vol. 10, No. 1, (2003), 27-36.
3. Hanaoka,
R., Takata, S., Murakumo, M. and Anzai, H., "Properties of liquid jet
induced by electrohydrodynamic pumping in dielectric liquids", Electrical
Engineering in Japan, Vol. 138,
No. 4, (2002), 1-9.
4. Yabe,
A., Mori, Y. and Hijikata, K., "Ehd study of the corona wind between wire
and plate electrodes", AIAA Journal, Vol. 16, No. 4, (1978), 340-345.
5. Velkoff,
H. and Godfrey, R., "Low-velocity heat transfer to a flat plate in the
presence of a corona discharge in air", Journal of Heat Transfer, Vol. 101, (1979), 157-163.
6. Yamamoto,
T. and Velkoff, H., "Electrohydrodynamics in an electrostatic
precipitator", Journal of Fluid Mechanics,
Vol. 108, (1981), 1-18.
7. Tada,
Y., Takimoto, A. and Hayashi, Y., "Heat transfer enhancement in a
convective field by applying ionic wind", Journal of Enhanced Heat Transfer, Vol. 4, No. 2, (1997).
8. Kasayapanand,
N. and Kiatsiriroat, T., "Numerical modeling of the electrohydrodynamic
effect to natural convection in vertical channels", International Communications in
Heat and Mass Transfer, Vol. 34,
No. 2, (2007), 162-175.
9. Yan,
Y., Zhang, H. and Hull, J., "Numerical modeling of electrohydrodynamic
(ehd) effect on natural convection in an enclosure", Numerical Heat Transfer, Part A:
Applications, Vol. 46, No. 5,
(2004), 453-471.
10. Sheikhzadeh, G., Arefmanesh, A., Kheirkhah,
M. and Abdollahi, R., "Numerical study of natural convection in an
inclined cavity with partially active side walls filled with cu-water nanofluid",
International
Journal of Engineering-Transactions B: Applications, Vol. 24, No. 3, (2011), 279-288.
11. Saha, G., Saha, S., Hasan, M. and Islam,
M.Q., "Natural convection heat transfer within octagonal enclosure", IJE
Transactions A: Basics, Vol. 23,
No. 1, (2010), 1-10.
12. Maatki, C., Ghachem, K., Kolsi, L., Borjini,
M. and Ben Aissia, H., "Entropy generation of double diffusive natural
convection in a three dimensional differentially heated enclosure", International
Journal of Engineering, Vol. 2, (2014),
215-226.
13. Aung, W., "Fully developed laminar free
convection between vertical plates heated asymmetrically", International
Journal of Heat and Mass Transfer,
Vol. 15, No. 8, (1972), 1577-1580.
14. Bahrami, P. and Sparrow, E.,
"Experiments on natural convection from vertical parallel plates with
either open or closed edges", Journal of Heat Transfer, Vol. 102, (1980), 221-227.
15. Morrone, B., Campo, A. and Manca, O.,
"Optimum plate separation in vertical parallelplate channels for natural
convective flows: Incorporation of large spaces at the channel extremes", International
Journal of Heat and Mass Transfer,
Vol. 40, No. 5, (1997), 993-1000.
16. Lee, K.-T., "Natural convection heat
and mass transfer in partially heated vertical parallel plates", International
Journal of Heat and Mass Transfer,
Vol. 42, No. 23, (1999), 4417-4425.
17. Kasayapanand, N., "Enhanced heat
transfer in inclined solar chimneys by electrohydrodynamic technique", Renewable
Energy, Vol. 33, No. 3, (2008),
444-453.
18. Hassen, W., Traore, P., Borjinia, M. and
Aissiaa, H.B., "Numerical study of electro-thermo-convection in a
differentially heated cavity filled with a dielectric liquid subjected to
partial unipolar injection", International Journal of
Engineering-Transactions C: Aspects,
Vol. 28, No. 9, (2015), 1343.
19. Hassen, W., Elkhazen, M.I., Traore, P. and
Borjini, M.N., "Numerical study of the electro–thermo-convection in an
annular dielectric layer subjected to a partial unipolar injection", International
Journal of Heat and Fluid Flow,
Vol. 50, (2014), 201-208.
20. Lakeh, R.B. and Molki, M., "Enhancement
of convective heat transfer by electrically-induced swirling effect in laminar
and fully-developed internal flows", Journal of Electrostatics, Vol. 71, No. 6, (2013), 1086-1099.
21. Moghanlou, F.S., Khorrami, A.S.,
Esmaeilzadeh, E. and Aminfar, H., "Experimental study on
electrohydrodynamically induced heat transfer enhancement in a
minichannel", Experimental Thermal and Fluid Science, Vol. 59, (2014), 24-31.
22. Nasirivatan, S., Kasaeian, A., Ghalamchi, M.
and Ghalamchi, M., "Performance optimization of solar chimney power plant
using electric/corona wind", Journal of Electrostatics, Vol. 78, No., (2015), 22-30.
23. Kasayapanand, N., "Electrode
arrangement effect on natural convection", Energy conversion and management, Vol. 48, No. 4, (2007), 1323-1330.
24. Peng, M., Wang, T.-H. and Wang, X.-D.,
"Effect of longitudinal electrode arrangement on ehd-induced heat transfer
enhancement in a rectangular channel", International Journal of Heat and
Mass Transfer, Vol. 93, (2016),
1072-1081.
25. Hassen, W., Borjini, M., Traore, P. and
Aissia, H.B., "Electroconvection between coaxial cylinders of arbitrary
ratio subjected to strong unipolar injection", Journal of Electrostatics, Vol. 71, No. 5, (2013), 882-891.
26. Atten, P. and Moreau, R., "Stabilite
electrohydrodynamique des liquides isolants soumis a une injection
unipolaire", Journal of Mecanique,
Vol. 11, No. 3, (1972), 471-521.
27. Atten, P. and Lacroix, J., "Non-linear
hydrodynamic stability of liquids subjected to unipolar injection", Journal
de Mécanique, Vol. 18, (1979),
469-510.
28. El Moctar, A.O., Peerhossaini, H., Le
Peurian, P. and Bardon, J., "Ohmic heating of complex fluids", International
Journal of Heat and Mass Transfer,
Vol. 36, No. 12, (1993), 3143-3152.
29. Patankar, S., "Numerical heat transfer
and fluid flow, CRC press, (1980).
30. Borjini, M.N., Abidi, A. and Aissia, H.B.,
"Prediction of unsteady natural convection within a horizontal narrow
annular space using the control-volume method", Numerical Heat Transfer, Part A:
Applications, Vol. 48, No. 8,
(2005), 811-829.
31. Bejan, A., "Convection heat transfer,
John wiley & sons, (2013).
32. Vazquez,
P., Georghiou, G. and Castellanos, A., "Numerical analysis of the
stability of the electrohydrodynamic (ehd) electroconvection between two
plates", Journal of Physics D: Applied Physics, Vol. 41, No. 17, (2008), 175303.
|
|
|
|
|