|

|
IJE TRANSACTIONS B: Applications Vol. 30, No. 8 (August 2017) 1253-1259
|
Downloaded:
77 |
|
Viewed:
1372 |
|
|
|
|
|
M. Janani, D. Prakash, E. Harini and T. Harish
|
|
|
( Received:
April 20, 2017
– Accepted in Revised Form: July 07, 2017 )
|
|
|
Abstract
In this
paper, the heat
transfer to the fluid, passing through the double forward facing step (FFS)
channel with square obstacle
is enhanced by Taguchi’s S/N ratio analysis. Flow
through the forward facing step channel has a wide range of
applications in thermal
systems due to its flow separation and subsequent reattachment, which in turn enhances
the heat
transfer. Flow separation and reattachment mainly depends on the
channel geometry, obstacle and flow parameters. Hence,
in this study, step
height in the channel, obstacle size, Reynold’s number and gap between the
obstacle and step are
included as control paramters in the S/N ratio analysis
for maximizing the heat transfer. These parameters are varied
through three
levels of values and L9 orthogonal array is employed. Numerical simulation
technique is applied to analyze
the L9 cases through computational fluid
dynamics code. From the simulation, the rise in temperature at the channel
exit
with reference to the inlet is predicted. The best values for the identified
control parameters conclude to a
temperature raise of about 2.86°C. The optimum result obtained
from the S/N ratio analysis is also compared with
response surface methodology
technique. Finally, analysis of variance (ANOVA) is conducted and identified
that step
height and flow Reynold’s number affect the heat transfer by about 79
and 19%, respectively.
|
|
|
Keywords
Double forward facing step flow, Square obstacle, Taguchi’s S/N ratio analysis, Response surface methodology technique,
ANOVA, Numerical simulation.
|
|
|
چکیده
در این مقاله،
انتقال حرارت به مایعی که از کانال دو طرفه رو به جلو (FFS) با مانع مربعی عبور میکند با آنالیزS/N تاگوچی افزایش داده می شود.
جریان در کانال گام رو به جلو کاربرد گسترده ای در سیستم های حرارتی دارد چرا که جداسازی
جریان و اتصال مجدد آن، به نوبه خود انتقال حرارت را افزایش می دهد. جداسازی جریان
و اتصال مجدد به طور عمده به هندسه کانال، مانع و پارامترهای جریان بستگی دارد. از
این رو، در این مطالعه، ارتفاع گام در کانال، اندازه مانع، عدد رینولدز و فاصله بین
مانع و گام به عنوان پارامترهای کنترل در آنالیز نسبت S/N برای به حداکثر رساندن انتقال حرارت بررسی می شود. این پارامترها
در سه سطح مقادیر تغییر داده شده و در آرایه افقی L9 استفاده می شوند. شبیه سازی عددی برای تحلیل موارد L9 از طریق کد دینامیک سیالات محاسباتی استفاده می شود. از شبیه سازی،
افزایش دما در خروجی کانال با توجه به ورودی پیش بینی شده است. با استفاده از
بهترین مقادیر برای پارامترهای کنترل، افزایش درجه حرارت در حدود 2.86درجه
سانتیگراد است. نتیجه مطلوب حاصل از آنالیز نسبت S/N با روش پاسخ سطح مقایسه شده است. در نهایت، آنالیز واریانس (ANOVA) انجام می شود و مشخص می شود که ارتفاع گام و عدد رینولدز روی
انتقال حرارت به ترتیب به میزان 79 و 19٪ تاثیرگذار
هستند.
|
|
References
1. Abu-Mulaweh,
H., "A review of research on laminar mixed convection flow over
backward-and forward-facing steps", International Journal of Thermal Sciences, Vol. 42, No. 9, (2003), 897-909.
2. Scheit,
C., Esmaeili, A. and Becker, S., "Direct numerical simulation of flow over
a forward-facing step–flow structure and aeroacoustic source regions", International
Journal of Heat and Fluid Flow,
Vol. 43, (2013), 184-193.
3. Kherbeet,
A.S., Mohammed, H., Munisamy, K. and Salman, B., "The effect of step
height of microscale backward-facing step on mixed convection nanofluid flow
and heat transfer characteristics", International Journal of Heat and Mass
Transfer, Vol. 68, (2014),
554-566.
4. Oztop,
H.F., Mushatet, K.S. and Yılmaz, İ., "Analysis of turbulent flow and heat
transfer over a double forward facing step with obstacles", International
Communications in Heat and Mass Transfer, Vol. 39, No. 9, (2012), 1395-1403.
5. Xie,
W. and Xi, G., "Geometry effect on flow fluctuation and heat transfer in
unsteady forced convection over backward and forward facing steps", Energy, Vol. 132, (2017), 49-56.
6. Nassab,
S.G., Moosavi, R. and Sarvari, S.H., "Turbulent forced convection flow
adjacent to inclined forward step in a duct", International Journal of Thermal
Sciences, Vol. 48, No. 7,
(2009), 1319-1326.
7. Sanyılmaz,
M., "Design of experiment and an application for taguchi method in quality
improvement activity", MS Thesis, Dumlupınar University, Turkey, (2006),
8. Prakash, D. and Ravikumar, P.,
"Analysis of thermal comfort and indoor air flow characteristics for a
residential building room under generalized window opening position at the
adjacent walls", International Journal of Sustainable Built
Environment, Vol. 4, No. 1,
(2015), 42-57.
9. Ross,
P.J.P.J., "Taguchi techniques for quality engineering: Loss function,
orthogonal experiments, parameter and tolerance design, (1996).
10. Taguchi, G., Chowdhury, S. and Wu, Y.,
"Taguchi's quality engineering handbook, Wiley Online Library, (2005).
11. Montgomery, D.C., "Design and analysis
of experiments, John Wiley & Sons,
(2017).
12. Balasubramanian, P. and Senthilvelan, T.,
"Optimization of machining parameters in edm process using cast and
sintered copper electrodes", Procedia Materials Science, Vol. 6, (2014), 1292-1302.
13. Ahmadkhaniha, D., Sohi, M.H., Zarei-Hanzaki,
A., Bayazid, S. and Saba, M., "Taguchi optimization of process parameters
in friction stir processing of pure MG", Journal of Magnesium and Alloys, Vol. 3, No. 2, (2015), 168-172.
14. Asiltürk, I. and Akkuş, H.,
"Determining the effect of cutting parameters on surface roughness in hard
turning using the taguchi method", Measurement, Vol. 44, No. 9, (2011), 1697-1704.
15. Kadaganchi, R., Gankidi, M.R. and Gokhale,
H., "Optimization of process parameters of aluminum alloy aa 2014-t6
friction stir welds by response surface methodology", Defence Technology, Vol. 11, No. 3, (2015), 209-219.
16. Myers, R.H., "Response surface
methodology", Vol., No., (1971).
17. Reddy, V.P.K., Reddy, M.K. and Prakash, D.,
"Multi objective optimization on insulated residential roof with solar
water heating system using grey relation analysis" International Journal of Engineering, Transactions B: Applications, Vol. 29, No. 11, (2016)..
18. Parida, A., Routara, B. and Bhuyan, R.,
"Surface roughness model and parametric optimization in machining of gfrp
composite: Taguchi and response surface methodology approach", Materials
Today: Proceedings, Vol. 2, No.
4-5, (2015), 3065-3074.
19. Moghaddam, M.A. and Kolahan, F., "Optimization of
edm process parameters using statistical analysis and simulated annealing
algorithm", International Journal of Engineering-Transactions A: Basics, Vol. 28, No. 1, (2014), 154-161.
|
|
|
|
|