Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 30, No. 8 (August 2017) 1279-1287   

downloaded Downloaded: 83   viewed Viewed: 1317

  PUSH BACK DESIGN IN TWO-ELEMENT DEPOSITS INCORPORATING GRADE UNCERTAINTY (RESEARCH NOTE)
 
GH. H. Kakha and M. Monjezi
 
( Received: May 14, 2017 – Accepted in Revised Form: July 07, 2017 )
 
 

Abstract    Push back design as a complex task, is one of the major steps in the open pit mines planning. Push backs can be generated by varying economic factors such as commodity price, mining cost, processing cost, etc. Another important issue in generating push backs is grade uncertainty, which can cause the problem be more complex. Conventional methods of push back design ignore grade uncertainty. To overcome this, “Grade Parameterization using Variance Algorithm” (GPVA) can be implemented. In this paper, an attempt was made to utilize GPVA in a hypothetical two-element deposit with the aim of minimization grade uncertainty effect on push backs design. Finally, the same example was solved using Whittle algorithm, the results indicate the superiority of the GPVA.

 

Keywords    push back, grade uncertainty, GPVA, two-element deposits

 

چکیده    طراحی پوش­بک به عنوان یک امر پیچیده، یکی از مراحل اصلی طراحی معادن روباز است، پوش­بک­ها را می­توان با استفاده از فاکتورهای اقتصادی همچون قیمت ماده معدنی، هزینه معدنکاری، هزینه فرآوری و غیره ایجاد کرد. از مسائل مهم دیگر در ایجاد پوش­بک­ها عدم­قطعیت عیار می­باشد، که می­تواند مسئله طراحی را پیچیده­تر کند. در روش­های سنتی طراحی پوش­بک، عدم­قطعیت عیار در نظر گرفته نمی‌شود. برای غلبه بر این مشکل، می­توان الگوریتم پارامترسازی عیار با استفاده از واریانس (GPVA) را اجرا کرد. در این مقاله، تلاش شده تا در یک ذخیره دو عنصره فرضی با استفاده از روش GPVA، طراحی پوش­بک­ها با هدف کمینه سازی اثر عدم­قطعیت عیار صورت پذیرد. در نهایت، همین مسئله با استفاده از الگوریتم ویتل نیز حل شد که نتایج حاصله نشان­دهنده برتری الگوریتم GPVA می­باشد.

References   

1.      Dimitrakopoulos, R., "Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation", International Journal of Surface Mining, Reclamation and Environment,  Vol. 12, No. 4, (1998), 173-179.

2.      Vallee, M., "Mineral resource+ engineering, economic and legal feasibility= ore reserve", CIM bulletin,  Vol. 93, No. 1038, (2000), 53-61.

3.      Lerchs, H. and FI, G., "Optimum design of open-pit mines", in Operations Research, Inst Operations Research Management Sciences 901 Elkridge Landing Rd, Ste 400, Linthicum Hts, MD 21090-2909. Vol. 12, (1964), B59.

4.      Gershon, M., "An open-pit production scheduler: Algorithm and implementation", Min. Eng.(Littleton, Colo.);(United States),  Vol. 39, No. 8, (1987).

5.      Dagdelen, K. and François-Bongarçon, D., "Towards the complete double parameterization of recovered reserves in open pit mining", in Proceedings of 17th international APCOM symposium., (1982), 288-296.

6.      François-Bongarçon, D. and Guibal, D., "Algorithms for parameterizing reserves under different geometrical constraints", in Proc. 17th symposium on the application of computers and operations research in the mineral industries (APCOM),(New York: AIME, (1982), 297-309.

7.      Wang, Q. and Sevim, H., "Alternative to parameterization in finding a series of maximum-metal pits for production planning", Mining Engineering,  Vol. 47, No. 2, (1995), 178-182.

8.      Osanloo, M. and Ataei, M., "Using 2d lerchs and grossmann algorithm to design final pit limits of sungun copper deposit of iran", International Journal of Engineering,  Vol. 13, No. 4, (2000), 81-89.

9.      Ramazan, S. and Dagdelen, K., "A new push back design algorithm in open pit mining", in Proceedings of 17th MPES conference, Calgary, Canada., (1998), 119-124.

10.    Rahmanpour, M. and Osanloo, M., "Resilient decision making in open pit short-term production planning in presence of geologic uncertainty", International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 7, (2016), 1022.

11.    Smith, M.L., "Integrating conditional simulation and stochastic programming: An application in production scheduling", Computer Application in the Materials Industries,  (2001), 203-208.

12.    Dimitrakopoulos, R. and Ramazan, S., "Uncertainty based production scheduling in open pit mining", SME Transactions,  Vol. 316, (2004).

13.    Gholamnejad, J. and Osanloo, M., "Incorporation of ore grade uncertainty into the push back design process", Journal of the South African Institute of Mining & Metallurgy,  Vol. 107, No. 3, (2007), 177-183.

14.    Dimitrakopoulos, R. and Ramazan, S., "Stochastic integer programming for optimising long term production schedules of open pit mines: Methods, application and value of stochastic solutions", Mining Technology,  Vol. 117, No. 4, (2008), 155-160.

15.    Gholamnejad, J., Osanloo, M. and Khorram, E., "A chance constrained integer programming model for open pit long-term production planning", International Journal of Engineering Transactions A: Basics,  Vol. 4, No. 21, (2008), 407-418.

16.    Lamghari, A. and Dimitrakopoulos, R., "A diversified tabu search approach for the open-pit mine production scheduling problem with metal uncertainty", European Journal of Operational Research,  Vol. 222, No. 3, (2012), 642-652.

17.    Benndorf, J. and Dimitrakopoulos, R., "Stochastic long-term production scheduling of iron ore deposits: Integrating joint multi-element geological uncertainty", Journal of Mining Science,  Vol. 49, No. 1, (2013), 68-81.

18.    Goodfellow, R. and Dimitrakopoulos, R., "Algorithmic integration of geological uncertainty in pushback designs for complex multiprocess open pit mines", Mining Technology,  Vol. 122, No. 2, (2013), 67-77.

19.    Whittle, J., "A decade of open pit mine planning and optimization-the craft of turning algorithms into packages",  (1999).

20.    Osanloo, M. and Ataei, M., "Using equivalent grade factors to find the optimum cut-off grades of multiple metal deposits", Minerals Engineering,  Vol. 16, No. 8, (2003), 771-776.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir