IJE TRANSACTIONS A: Basics Vol. 31, No. 10 (October 2018) 1633-1641   

downloaded Downloaded: 49   viewed Viewed: 1023

P. Karuppanan and K. Anuradha
( Received: July 29, 2017 – Accepted in Revised Form: April 26, 2018 )

Abstract    This article proposed a simple self cascode RGC amplifier configuration to increase the gain and bandwidth. The cascode amplifier eliminates the miller capacitance between input and output and facilitates high gain, high input and output impedance with high bandwidth. However, the cascode amplifier requires relatively high supply voltage for proper operation and it decreases the output voltage swing by overdrive voltage. These issues are overcome by self cascode based RGC amplifier; even though it has low bandwidth due to the presence of one of its pole at low frequency. The bandwidth and output impedance of the conventional RGC has increased using a split length compensation technique. To improve the overall performance of the amplifier, introduced a simple self cascode RGC without using additional passive elements. The expression of gain and output impedance for the proposed amplifier is derived using small signal analysis. The calculated value of voltage gain for the projected circuit is 58.37 dB which is more than the self cascode based RGC. The power dissipation of the proposed circuit is 1.07 µWatt and it was compared with CS, cascode, self cascode and SC based cascode, RGC, SC based RGC amplifiers.


Keywords    Self cascode, Regulated cascode, self cascode based regulated cascode, simple self cascode Regulated Cascode



در این مقاله، یک پیکربندی آمپلی‌فایر RGC خودکامپیوتر ساده برای افزایش سود و پهنای باند پیشنهاد شده است. آمپلی‌فایر کاسکوود ظرفیت میلز را بین ورودی و خروجی حذف می‌کند و امپدانس بالا، ورودی بالا و پهنای باند بالا را تسهیل می‌کند. با این حال، تقویت‌کننده کواکدون نیاز به ولتاژ منبع تغذیه نسبتاً بالا برای عملکرد مناسب دارد و نوسان ولتاژ خروجی را با ولتاژ overdrive کاهش می‌دهد. این مسائل با آمپلی‌فایر RGC مبتنی بر خودکامپیوتر غلبه می‌کند؛ حتی اگر پهنای باند کم با توجه به حضور یک قطب آن در فرکانس پایین باشد. پهنای باند و امپدانس خروجی RGC معمولی با استفاده از روش جبران تقسیم طول موج افزایش یافته است. برای بهبود عملکرد کلی تقویت‌کننده، یک RGC خود کاسکت ساده بدون استفاده از عناصر منفعل اضافی معرفی شده است. بیان امپدانس افزایش و امپدانس برای تقویت‌کننده پیشنهادی با استفاده از تحلیل سیگنال کوچک مشتق شده است. مقدار محاسبه شده از ولتاژ برای مدار پیش‌بینی شده dB 37/58 است که بیشتر از RGC مبتنی بر خود کاسکو است. از دست دادن قدرت مدار پیشنهادی 07/1 مگاوات است و با CS، cascode، self cascode و cascode based SC، RGC، SC تقویت‎کننده‎های RGC مقایسه شده است.


1. Zhao, X., Zhang, Q., Wang, Y. and Deng, M., “Transconductance and slew rate improvement technique for current recycling folded cascode amplifier”, AEU - International Journal of Electronics and Communications, Vol. 70, No. 3, (2016), 326–330.
2 Zhao, C., Liu, J., Shen, F. and Yi, Y., “Low power CMOS power amplifier design for RFID and the Internet of Things”, Computers & Electrical Engineering, Vol. 52, (2016), 157–170.
3. Zhao, X., Fang, H., Ling, T. and Xu, J., “Low-voltage process-insensitive frequency compensation method for two-stage OTA with enhanced DC gain”, AEU - International Journal of Electronics and Communications, Vol. 69, No. 3, (2015), 685–690.
4. Wang, J., Zhu, Z., Liu, S. and Ding, R., “A low-noise programmable gain amplifier with fully balanced differential difference amplifier and class-AB output stage”, Microelectronics Journal, Vol. 64, (2017), 86–91.
5. Comer, D.J., Comer, D.T. and Petrie, C.S., “The utility of the composite cascode in analog CMOS design”, International Journal of Electronics, Vol. 91, No. 8, (2004), 491–502.
6. Prodanov, V.I. and Green, M.M., “CMOS current mirrors with reduced input and output voltage requirements”, Electronics Letters, Vol. 32, No. 2, (1996), 104–105.
7. Aghnout, S. and Masoumi, N., “Modeling of Substrate Noise Impact on a Single-Ended Cascode LNA in a Lightly Doped Substrate (RESEARCH NOTE)”, International Journal of Engineering - Transactions A: Basics, Vol. 23, No. 1, (2009), 23–28.
8. Raj, N., Singh, A.K. and Gupta, A.K., “Low voltage high performance bulk driven quasi-floating gate based self-biased cascode current mirror”, Microelectronics Journal, Vol. 52, (2016), 124–133.
9. Sedaghat, S.B., Karimi, G. and Banitalebi, R., “A Low Voltage Full-band Folded Cascoded UWB LNA with Feedback Topology”, International Journal of Engineering - Transactions A: Basics, Vol. 28, No. 1, (2014), 66–73.
10. Kaur, J., Prakash, N. and Rajput, S.S., “A Low Voltage High Performance Self Cascode Current Mirror”, International Journal of Electronics and communication Engineering, Vol. 02, No. 5, (2008), 1017–1020.
11. Galal, A.I.A., Pokharel, R., Kanaya, H. and Yoshida, K., “High linearity technique for ultra-wideband low noise amplifier in 0.18 μm CMOS technology”, AEU - International Journal of Electronics and Communications, Vol. 66, No. 1, (2012), 12–17.
12. Chen, C. L., Hsieh, W. L., Lai, W. J., Chen, K. H. and Wang, C. S., “A high-speed and precise current sensing circuit with bulk control (CCB) technique”, 15th IEEE International Conference on Electronics, Circuits and Systems, IEEE, (2008), 283–287.
13. Kundra, S., Soni, P. and Kundra, A., “Low power folded cascode OTA”, International Journal of VLSI design & Communication Systems, Vol. 3, No. 1, (2012), 127–136.
14. Shekhar, S., Walling, J.S. and Allstot, D.J., “Bandwidth Extension Techniques for CMOS Amplifiers”, IEEE Journal of Solid-State Circuits, Vol. 41, No. 11, (2006), 2424–2439. 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir