IJE TRANSACTIONS A: Basics Vol. 31, No. 10 (October 2018) 1708-1714   

downloaded Downloaded: 41   viewed Viewed: 456

Y. Zhanxin, Z. Fang, X. Lixiong, L. Hongjun, X. Dapeng, L. Junnan, D. Yu and L. Yalei
( Received: July 16, 2017 – Accepted in Revised Form: August 17, 2018 )

Abstract    For economic benefit of wind power generation, the equivalent conversion relationships and models between the different “quality” energy are studied deeply in the conversion processes of wind energy. Considering the effect of load demand characteristics and energy supply price on the wind energy utilization mode comprehensively, the multi-objective trans-utilization optimization model of wind energy is established, which the objections are both the maximum wind energy utilization ratio and comprehensive operational benefit of the energy consumption systems. Then, the quantum-behaved particle swarm optimization method is used to solve the model. By contrast to the traditional unitary energy supply mode, the results showed that the proposed models can improve the wind energy comprehensive utilization rate, and increase energy selling benefit of the energy supply system. The rationality and superiority of models are verified, and that provides a new idea for the large-scale develop and utilize wind energy.


Keywords    Energy Internet, Equivalent Conversion, Energy Selling Benefit, Wind Power Utilization



برای به دست آوردن مزیت اقتصادی تولید انرژی باد، روابط تبدیل مدل معادل بین انرژی "کیفیت" متفاوت در فرایندهای تبدیل انرژی باد مورد بررسی قرار می‌گیرد. با توجه به تأثیر ویژگی‌های تقاضا و قیمت عرضه انرژی در حالت استفاده از انرژی باد، به طور جامع، مدل بهینه‌سازی چند منظوره انرژی باد تولید شده است که اعتراضات هر دو نسبت حداکثر استفاده از انرژی باد و مزایای بهره‌برداری جامع سیستم‌های مصرف انرژی است. سپس، برای حل مدل، روش بهینه‌سازی ذرات رفتار شده توسط کوانتومی مورد استفاده قرار می‌گیرد. بر خلاف حالت سنتی انرژی یکپارچه، نتایج نشان داد که مدل‌های پیشنهادی می‌توانند میزان بهره‌برداری جامع از انرژی باد را افزایش دهند و مزایای فروش انرژی در سیستم تامین انرژی را افزایش دهند. عقلانیت و برتری مدل‌ها تأیید شده است و این ایده جدید برای توسعه و استفاده از انرژی باد است.


1. Tan, Z., Wu, E., Ju, L., Song, Y., Shen, S. and Zhang, J., “A Model for Contrastive Analysis on Risk of Income From Investment in Different Wind Power Resource Regions”, Power System Technology, Vol. 37, No. 03, (2013), 713–719.
2. Hosseini Molla, J., Barforoushi, T. and Adabi Firouzjaee, J., “Distributed Generation Expansion Planning Considering Load Growth Uncertainty: A Novel Multi-Period Stochastic Model”, International Journal of Engineering   Transactions C: Aspects, Vol. 31, No. 3, (2018), 405–414.
3. She, X., Huang, A.Q., Wang, F. and Burgos, R., “Wind Energy System With Integrated Functions of Active Power Transfer, Reactive Power Compensation, and Voltage Conversion”, IEEE Transactions on Industrial Electronics, Vol. 60, No. 10, (2013), 4512–4524.
4. Bai, J.H., Xing, S.X., Jia, D.X. and Chen, L., “Study of Major Questions of Wind Power Digestion and Transmission in China”, Power System and Clean Energy, Vol. 26, No. 01, (2010), 14–17.
5. AI, X. and Liu, X., “Chance constrained model for wind power usage based on demand response”, Journal of North China Electric Power University (Natural Science Edition), Vol. 38, No. 03, (2011), 17–22.
6. Yu, D., Song, S., Zhang, B. and Han X., “Synergistic Dispatch of PEVs Charging and Wind Power in Chinese Regional Power Grids”, Automation of Electric Power Systems, Vol. 35, No. 14, (2011), 24–29.
7. Zheng, L., Hu, W., Lu, Q.Y., Min, Y., Yuan, F. and Gao, Z.H., “Research on planning and operation model for energy storage system to optimize wind power integration”, Proceedings of the CSEE, Vol. 34, No. 16, (2014), 2533–2543.
8. Sattarpour, T. and Nazarpour, D., “Assessing the Impact of Size and Site of DGs and SMs in Active Distribution Networks for Energy Losses Cost”, International Journal of Engineering - Transactions A: Basics, Vol. 28, No. 7, (2015), 1002–1010.
9. Wu, X., Wang, X., Li, J., Guo, J., Zhang, K. and Chen, J., “A Joint Operation Model and Solution for Hybrid Wind Energy Storage Systems”, Proceedings of the CSEE, Vol. 33, No. 13, (2013), 10–17.
10. Deshmukh, M.K. and Deshmukh, S.S., “Modeling of hybrid renewable energy systems”, Renewable and Sustainable Energy Reviews, Vol. 12, No. 1, (2008), 235–249.
11. Lu, Q., Chen, T., Wang, H., Li, L., Lu, Y. and Li, W., “Combined heat and power dispatch model for power system with heat accumulator”, Electric Power Automation Equipment, Vol. 34, No. 05, (2014), 79–85.
12. Ding, M., Wang, B., Zhao, and Chen, Z., “Configuration Optimization of Capacity of Standalone PV-Wind-Diesel-Battery Hybrid Microgrid”, Power System Technology, Vol. 37, No. 03, (2013), 575–581.
13. Xiao, X., Kan, W., Yang, Y., Zhang, S. and Xiao, Y., “Superstructure-based Optimal Planning of Cogeneration Systems With Storage”, Proceedings of the CSEE, Vol. 32, No. 32, (2012), 08-14.
14. Li, Z., Zhang, F., Liang, J., Yun, Z. and Zhang J., “Optimization on Microgrid With Combined Heat and Power System”, Proceeding of the CSEE, Vol. 35, No. 14, (2015), 3659–3576.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir