|

|
IJE TRANSACTIONS B: Applications Vol. 31, No. 5 (May 2018) 820-825
|
Downloaded:
63 |
|
Viewed:
853 |
|
|
EXPERIMENTAL STUDY ON FLOW CHARACTERISTICS AROUND TWIN WIND BLADES (RESEARCH NOTE)
|
|
|
B. Ravi Kumar* and M. K. Saranprabhu
|
|
|
( Received:
May 07, 2017
– Accepted in Revised Form: March 08, 2018 )
|
|
|
Abstract
In the current study, twin wind blades are
designed, fabricated and the effect of various gap ratio (g*) at various
angle
of attacks (α) on a next to each other twin wind blades are examined in an
open-channel wind tunnel.
Aerodynamic forces and moments are determined by
using three-constraint force balancer. For gap ratio of zero, the
aerodynamic
attributes are like those of a solitary wind blade edge. As g* increases, these
two wind blades actuate the
vertical wake to stage vortex shedding modes. With
further increment in g*, the wake stream pattern was like those
behind a
solitary wind blade. For a solitary wind blade, the maximum lift is found to be
at α = 30. The pitching
moment increases with α. The impact of upper aerofoil
blade on the lower one diminished as g* increases.
|
|
|
Keywords
Rotor, Flow characterization, Aerodynamic Performance, CFD Investigation
|
|
|
چکیده
در مطالعه حاضر، تیغه های دوقلو بادی طراحی و
ساخته شده اند و اثر نسبت فاصله گشتاور (g
*) در زاویه های مختلف حملات (α) در کنار
یکدیگر تیغه های دوقلوی باد در یک تونل باد باز کانونی بررسی می شود. نیروها و
ممانت آیرودینامیکی با استفاده از سه برابر کننده تعادل نیروی محدود تعیین می شود.
برای نسبت شکاف صفر، مشخصه های آیرودینامیک مانند لبه ی تیغه ی انفرادی است.
همانطور که g * افزایش می یابد، این دو تیغه باله به سمت
عمودی حرکت می کنند تا حالت های انفجار گردابه را کنترل کنند. با افزایش بیشتر در g *، الگوی جریان پی در پی همانند کسانی بود
که پشت یک تیغه ی هوای انفرادی بودند. برای یک تیغه ی هوای انفرادی، حداکثر لیفت
در α = 30 دیده می شود. لحظه ی پچینگ با α افزایش می یابد. تاثیر تیپ بالایی هواپیما
بر روی پایین تر به عنوان g * افزایش می
یابد.
|
|
References
1. Batill,
S.M. and Mueller, T.J., "Visualization of transition in the flow over an
airfoil using the smoke-wire technique", American Institute of Aeronautics
and Astronautics Journal, Vol.
19, No. 3, (1981), 340-345.
2. Lissaman,
P., "Low-reynolds-number airfoils", Annual Review of Fluid Mechanics, Vol. 15, No. 1,
(1983), 223-239.
3. Goldstein,
R., Flow visualization by direct injection, in Fluid mechanics measurements,
second edition. 2017, Routledge.391-474.
4. Crabtree,
L., "Effects of leading-edge separation on thin wings in two-dimensional
incompressible flow", Journal of the Aeronautical Sciences, Vol. 24, No. 8, (1957), 597-604.
5. Dong, G.-J.
and Lu, X.-Y., "Characteristics of flow over traveling wavy foils in a
side-by-side arrangement", Physics of Fluids, Vol. 19, No. 5, (2007), 057107.
6. Hansen,
M.O. and Madsen, H.A., "Review paper on wind turbine aerodynamics", Journal
of Fluids Engineering, Vol. 133,
No. 11, (2011).
7. Sieverding,
C.H., Richard, H. and Desse, J.-M., "Turbine blade trailing edge flow
characteristics at high subsonic outlet mach number", Journal
of Turbomachinery, Vol. 125, No.
2, (2003), 298-309.
8. Saranprabhu,
M., Tirumalaisamudram, T., Kumar, B.R. and Sreehari, V.,
"Aero-thermodynamic analysis of a supersonic aircraft", Journal of advanced research and dynamical
control special issue 11, (2017),120-127.
9. Abbishek,
R., Kumar, B.R. and Subramanian, H.S., "Fatigue analysis and design
optimization of aircraft’s central fuselage", in IOP Conference Series:
Materials Science and Engineering, IOP Publishing. Vol. 225, (2017), 012031.
10. Ashory, M.,
Talebi, F. and Ghadikolaei, H.R., "A computational study about the effect
of turbines pitched blade attack angle on the power consumption of a stirred
tank", International Journal of Engineering-Transactions A: Basics, Vol. 31, No. 1, (2017), 65-70.
11. Rajabi, N., Rafee, R. and Frazam-Alipour, S., "Effect of blade
design parameters on air flow through an axial fan", International Journal of
Engineering-Transactions A: Basics,
Vol. 30, No. 10, (2017), 1583.
12. Uzol, O.,
Chow, Y.-C., Katz, J. and Meneveau, C., "Experimental investigation of
unsteady flow field within a two stage axial turbomachine using particle image
velocimetry", in ASME Turbo Expo 2002: Power for Land, Sea, and Air,
American Society of Mechanical Engineers., (2002), 1201-1214.
13. Yen, S.C. and
Liu, J.H., "Wake flow behind two side-by-side square cylinders", International
Journal of Heat and Fluid Flow,
Vol. 32, No. 1, (2011), 41-51.
14. Nejad, A.Z.,
Rad, M. and Khayat, M., "Numerical and experimental investigations for
design of a high performance micro-hydro-kinetic turbine", International
Journal of Engineering-Transactions B: Applications, Vol. 30, No. 5, (2017), 785.
15. Amanifard,
N., "Stall vortex shedding over a compressor cascade (research
note)", International Journal of Engineering-Transactions A: Basics, Vol. 18, No. 1, (2004), 29-36.
|
|
|
|
|