IJE TRANSACTIONS B: Applications - Special Issue - Sustainable Technologies for Water and Environment; Guest Editor Prof. Dr. Ahmad Fauzi Ismail and Associate Guest Editor Dr. Lau Woei Jye, Universiti Teknologi Malaysia (UTM), Malaysia
Vol. 31, No. 8 (August 2018) 1364-1372    Article in Press

downloaded Downloaded: 103   viewed Viewed: 1097

K. P. Wai, C. H. Koo, W. C. Chong, S. O. Lai and Y. L. Pang
( Received: December 10, 2017 – Accepted in Revised Form: January 23, 2018 )

Abstract    Silver-impregnated membrane was facilely prepared by ex situ silver nanoparticles (NPs) blending method using polyethersulfone (PES) as the base polymer. A total of three membranes [F1(S0), F2(S0.5) and F3(S2.0)] were fabricated at different weight percentages of polymer and silver (Ag) loadings to compare their effects on membrane morphological and performance properties. All membrane types were characterized using scanning electron microscope (SEM), energy-dispersive X-ray, Fourier-transform infrared spectroscopy, zeta potential analyzer and contact angle analysis. Characterization data and background theories from the literature were used to study and relate the effect of silver nanoparticles (AgNPs) on the physicochemical properties of the PES/Ag composite membranes with respect to pure water permeability, structural property, surface charge and surface hydrophilicity. Solute rejection performance and antibacterial property of the PES/Ag composite membranes were performed using humic acid (HA) and Escherichia coli (E. Coli) bacteria. The results showed that the membrane with the highest Ag loading (F3) exhibited the highest pure water permeability among all the composite membranes. This phenomenon could be attributed to the morphological changes of the membrane due to the addition of Ag. In this study, contact angle of the membranes showed decreasing trend with the addition of Ag as well as the increase in Ag loading. On the contrary, pore radius of the membranes was found increased with increasing in Ag loading. Owing to this, the F3 membrane demonstrated relatively lower HA rejection (i.e. 89.55%) compared to the pure PES membrane. In terms of the antibacterial performance evaluation, one can confidently state that the membranes with the addition of Ag showed excellent property in biofouling mitigation based on numerous dead E. coli observed on the membrane surface under SEM analysis.


Keywords    antibacterial, E. coli, hydrophilicity, polyethersulfone, silver nanoparticle



ممبران آغشته به نقره با استفاده از ترکیب کردن نانوذرات نقره خارجی (NPs) با پلی اترسولون (PES) به عنوان پلیمر پايه به صورت ساده آماده شد. در مجموع سه ممبران [F1(S0)، F2(S0.5) و F3(S2.0)] با در صدهای وزنی متفاوت پلیمر و بارهای نقره (Ag) فراهم شد تا اثرات آن بر خواص مورفولوژیکی و عملکرد ممبران مقایسه شود. تمامی ممبران ها با استفاده از میکروسکوپ الکترونی روبشی (SEM)، طیف سنجی پراش انرژی پرتو ایکس، تحلیل پتانسیل زتا و تحلیل زاویه تماس طبقه بندی شدند. با استفاده از داده های توصیفی و نظریه های پس زمینه برگرفته از مقالات، اثر نانوذرات نقره (AgNPs) بر روی خواص فیزیکوشیمیایی ممبران های ترکیبی PES/Ag نسبت به ظرفیت تراوایی آب، خواص ساختاری، بار سطحی و قدرت آبدوستی سطحی مورد مطالعه و بررسی قرار گرفت. عملکرد محلول فیلتر شده و ویژگی ضد باکتری ممبران های ترکیبی PES/Ag به وسیله اسید هیومیک (HA) و باکتری اشرشیا کولیفورم( E. coli) انجام شد. نتایج نشان داد که ممبران با بیشترین مقدار بار گذاری Ag (F3) بیشترین ظرفیت تراوایی آب را در میان ممبران های ترکیبی را بدست آورد. این پدیده میتواند به علت تغیرات مورفولوژیکی ممبران در اثر مقدار بیشتر Ag باشد. در این مطالعه زاویه تماس ممبران ها با افزودن Ag و همچنین افزایش بار گذاری Ag روند کاهشی را نشان داد. از طرف دیگر، شعاع منفذی ممبران ها، با افزایش بار گذاری Ag روند افزایشی را نشان داد. از اینرو، ممبران F3 در مقایسه با ممبران خالص PES مقدار نسبتا پایین تری از HA رد شده را( به مقدار 89.55%) نشان داد. با توجه به ارزیابی عملکرد ضد باکتری می توان با اطمینان بیان کرد که ممبران ها با افزودن Ag دارای خصوصیات عالی در کاهش آلودگی زیستی می باشند. این نتیجه گیری بر اساس مشاهده تعداد بی شماره باکتریهای مرده اشرشیا کولیفورم برسطح ممبران به وسیله میکروسکوپ الکترونی روبشی حاصل شد.

References    1.   Castro-Munoz, R., Yanez-Fernandez, J., Fila, V., "Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview", Food Chemistry, Vol. 213, (2016), 753-762. 2.   Thuyavan, Y. L., Anantharaman, N., Arthanareeswaran, G., Ismail, A. F., "Impact of solvents and process conditions on the formation of polyethersulfone membranes and its fouling behavior in lake water filtration", Journal of Chemical Technology & Biotechnology, Vol. 91, (2016), 2568-2581. 3. Rahimpour, A., Madaeni, S. S., "Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution", Journal of Membrane Science, Vol. 360, (2010), 371-379. 4.   Hołda, A. K., Aernouts, B., Saeys, W., Vankelecom, I. F. J., "Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes", Journal of Membrane Science, Vol. 442, (2013), 196-205. 5.   Liu, S. X., Kim, J.-T., "Characterization of Surface Modification of Polyethersulfone Membrane", Journal of Adhesion Science and Technology, Vol. 25, (2012), 193-212. 6.   Song, J. J., Huang, Y., Nam, S.-W., Yu, M., Heo, J., Her, N., Flora, J. R. V., Yoon, Y., "Ultrathin graphene oxide membranes for the removal of humic acid", Separation and Purification Technology, Vol. 144, (2015), 162-167. 7.   Van Wagner, E. M., Sagle, A. C., Sharma, M. M., La, Y.-H., Freeman, B. D., "Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance", Journal of Membrane Science, Vol. 367, (2011), 273-287. 8.   Hamid, N. A. A., Ismail, A. F., Matsuura, T., Zularisam, A. W., Lau, W. J., Yuliwati, E., Abdullah, M. S., "Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal", Desalination, Vol. 273, (2011), 85-92. 9.   Singer, P. C., "Humic substances as precursors for potentially harmful disinfection by-products", Water Science and Technology, Vol. 40, (1999), 25-30. 10.           Ahmad, A. L., Abdulkarim, A. A., Ismail, S., Ooi, B. S., "Preparation and characterisation of PES-ZnO mixed matrix membranes for humic acid removal", Desalination and Water Treatment, Vol. 54, (2014), 3257-3268. 11. Nazerah, A., Ismail, A., Jaafar, J., "Incorporation of bactericidal nanomaterials in development of antibacterial membrane for biofouling mitigation: a mini review", Jurnal Teknologi, Vol. 78, (2016), 53-61. 12.           Li, J.-H., Shao, X.-S., Zhou, Q., Li, M.-Z., Zhang, Q.-Q., "The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance", Applied Surface Science, Vol. 265, (2013), 663-670. 13.           Basri, H., Ismail, A. F., Aziz, M., "Polyethersulfone (PES)–silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity", Desalination, Vol. 273, (2011), 72-80. 14.           Ananth, A., Arthanareeswaran, G., Ismail, A. F., Mok, Y. S., Matsuura, T., "Effect of bio-mediated route synthesized silver nanoparticles for modification of polyethersulfone membranes", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 451, (2014), 151-160. 15. Huang, L., Zhao, S., Wang, Z., Wu, J., Wang, J., Wang, S., "In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane", Journal of Membrane Science, Vol. 499, (2016), 269-281. 16. Marambio-Jones, C., Hoek, E. M. V., "A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment", Journal of Nanoparticle Research, Vol. 12, (2010), 1531-1551. 17.           Andrade, P. F., de Faria, A. F., Oliveira, S. R., Arruda, M. A., Goncalves Mdo, C., "Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles", Water Research, Vol. 81, (2015), 333-342. 18.           Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ou-Yang, Y. S., Chen, Y. B., "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli", Applied Microbiology Biotechnology, Vol. 85, (2010), 1115-1122. 19.           Liu, H., Du, Y., Wang, X., Sun, L., "Chitosan kills bacteria through cell membrane damage", International Journal of Food Microbiology, Vol. 95, (2004), 147-155. 20. Choi, O., Yu, C. P., Esteban Fernandez, G., Hu, Z., "Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures", Water Research, Vol. 44, (2010), 6095-6103. 21. Zou, J., Xu, Y., Hou, B., Wu, D., Sun, Y., "Controlled growth of silver nanoparticles in a hydrothermal process", China Particuology, Vol. 5, (2007), 206-212. 22. Lee, K. H., Rah, S. C., Kim, S.-G., "Formation of monodisperse silver nanoparticles in poly(vinylpyrrollidone) matrix using spray pyrolysis", Journal of Sol-Gel Science and Technology, Vol. 45, (2008), 187-193. 23. Wang, H., Qiao, X., Chen, J., Wang, X., Ding, S., "Mechanisms of PVP in the preparation of silver nanoparticles", Materials Chemistry and Physics, Vol. 94, (2005), 449-453. 24. Babu, V. R., Kim, C., Kim, S., Ahn, C., Lee, Y.-I., "Development of semi-interpenetrating carbohydrate polymeric hydrogels embedded silver nanoparticles and its facile studies on E. coli", Carbohydrate Polymers, Vol. 81, (2010), 196-202. 25.           Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., Alvarez, P. J., "Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal", Water Research, Vol. 43, (2009), 715-723. 26.           Mansouri, J., Charlton, T., Chen, V., Weiss, T., "Biofouling performance of silver-based PES ultrafiltration membranes", Desalination and Water Treatment, Vol. 57, (2016), 28100-28114. 27.           Mollahosseini, A., Rahimpour, A., Jahamshahi, M., Peyravi, M., Khavarpour, M., "The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane", Desalination, Vol. 306, (2012), 41-50. 28.           Koo, C. H., Mohammad, A. W., Suja, F., Meor Talib, M. Z., "Setting-up of modified fouling index (MFI) and crossflow sampler-modified fouling index (CFS-MFI) measurement devices for NF/RO fouling", Journal of Membrane Science, Vol. 435, (2013), 165-175. 29.           Basri, H., Ismail, A. F., Aziz, M., Nagai, K., Matsuura, T., Abdullah, M. S., Ng, B. C., "Silver-filled polyethersulfone membranes for antibacterial applications — Effect of PVP and TAP addition on silver dispersion", Desalination, Vol. 261, (2010), 264-271. 30.           Du, J. R., Peldszus, S., Huck, P. M., Feng, X., "Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment", Water Research, Vol. 43, (2009), 4559-4568. 31. Ngang, H. P., Ooi, B. S., Ahmad, A. L., Lai, S. O., "Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties", Chemical Engineering Journal, Vol. 197, (2012), 359-367. 32. Liu, J., Hurt, R. H., "Ion release kinetics and particle persistence in aqueous nano-silver colloids", Environmental Science & Technology, Vol. 44, (2010), 2169-2175. 33.           Susanto, H., Ulbricht, M., "Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives", Journal of Membrane Science, Vol. 327, (2009), 125-135. 34.           Jiang, B.-B., Sun, X.-F., Wang, L., Wang, S.-Y., Liu, R.-D., Wang, S.-G., "Polyethersulfone membranes modified with D-tyrosine for biofouling mitigation: Synergistic effect of surface hydrophility and anti-microbial properties", Chemical Engineering Journal, Vol. 311, (2017), 135-142. 35. Han, Y., Jiang, Y., Gao, C., "High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes", ACS Applied Materials & Interfaces, Vol. 7, (2015), 8147-8155. 36.           Chong, W. C., Mahmoudi, E., Chung, Y. T., B., M. M., Koo, C. H., Mohammad, A. W., "Polyvinylidene fluoride membranes with enhanced antibacterial and low fouling properties by incorporating ZnO/rGO composites", Journal of Desalination and Water Treatment, Vol. 10, (2017), 1-10. 37.           Al Malek, S. A., Abu Seman, M. N., Johnson, D., Hilal, N., "Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone", Desalination, Vol. 288, (2012), 31-39. 38.           Wan, L.-S., Xu, Z.-K., Wang, Z.-G., "Leaching of PVP from polyacrylonitrile/PVP blending membranes: A comparative study of asymmetric and dense membranes", Journal of Polymer Science Part B: Polymer Physics, Vol. 44, (2006), 1490-1498. 39.           Liao, C., Yu, P., Zhao, J., Wang, L., Luo, Y., "Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials", Desalination, Vol. 272, (2011), 59-65. 40. Song, H., Ran, F., Fan, H., Niu, X., Kang, L., Zhao, C., "Hemocompatibility and ultrafiltration performance of surface-functionalized polyethersulfone membrane by blending comb-like amphiphilic block copolymer", Journal of Membrane Science, Vol. 471, (2014), 319-327. 41.           Haider, M. S., Shao, G. N., Imran, S. M., Park, S. S., Abbas, N., Tahir, M. S., Hussain, M., Bae, W., Kim, H. T., "Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications", Materials Science and Engineering C: Materials for Biological Applications, Vol. 62, (2016), 732-745. 42. Qu, P., Tang, H., Gao, Y., Zhang, L., Wang, S., "Polyethersulfone composite membrane blended with cellulose fibrils", BioResources, Vol. 5, (2010), 2323-2336. 43.           Celik, E., Park, H., Choi, H., Choi, H., "Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment", Water Research, Vol. 45, (2011), 274-282. 44. Pieracci, J., Crivello, J. V., Belfort, G., "Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling", Journal of Membrane Science, Vol. 156, (1999), 223-240. 45.           Wang, W., Yang, H., Wang, X., Jiang, J., Zhu, W., "Effects of fulvic acid and humic acid on aluminum speciation in drinking water", Journal of Environmental Sciences, Vol. 22, (2010), 211-217. 46. Oatley, D. L., Llenas, L., Perez, R., Williams, P. M., Martinez-Llado, X., Rovira, M., "Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation", Advances in Colloid and Interface Science, Vol. 173, (2012), 1-11. 47.           Maheswari, P., Prasannadevi, D., Mohan, D., "Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes", High Performance Polymers, Vol. 25, (2013), 174-187. 48.           Ziegler, U., Groscurth, P., "Morphological Features of Cell Death", News in Physiological Sciences, Vol. 19, (2004), 124-128. 49.           Xia, Y., Cheng, C., Wang, R., Qin, H., Zhang, Y., Ma, L., Tan, H., Gu, Z., Zhao, C., "Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes", Polymer Chemistry, Vol. 5, (2014), 5906-5919. 50.           Trevors, J. T., "Identification of Plasmid Containing Bacteria in an Activated Sludge Reactor", Environmental Toxicology & Water Quality, Vol. 2, (1987), 283-291.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir