IJE TRANSACTIONS B: Applications - Special Issue - Sustainable Technologies for Water and Environment; Guest Editor Prof. Dr. Ahmad Fauzi Ismail and Associate Guest Editor Dr. Lau Woei Jye, Universiti Teknologi Malaysia (UTM), Malaysia
Vol. 31, No. 8 (August 2018) 1302-1307    Article in Press

downloaded Downloaded: 289   viewed Viewed: 1227

N. Sultana
( Received: December 11, 2017 – Accepted: April 18, 2018 )

Abstract    Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with different pore sizes were obtained by adjusting the concentration of the gelatin. Scaffolds with 3.75% (w/v) gelatin and 5% (w/v) gelatin produced pore range of 100 to 450µm. The average pore size increased with the increase in gelatin concentration. Meanwhile, the properties of the scaffolds in terms of water uptake were studied. The results showed that when the concentration of the gelatin solution was changed from 3.75% to 5%, the water adsorption of the formed scaffolds decreased by 104%. The concentration of gelatin increase caused a reduction in water uptake.


Keywords    Gelatin, scaffolds, thermally induced phase separation


چکیده    ژلاتین به عنوان یک محصول نیمه تجزیه شده کلاژن در نظر گرفته می شود ویک بسپار قابل تجزیه زیستی است که می تواند برای ساخت داربست های بافتی در مهندسی بافت مورد استفاده قرار گیرد. در این بررسی داربست های بافتی سه بعدی متخلخل توسط فرآیند جداسازی فاز ناشی از حرارت و خشک کردن انجمادی ساخته شد. ساختار متخلخل داربست های زیستی و ابعاد حفره های آن بوسیله میکروسکوپ الکترونی روبشی مورد بررسی قرار گرفت. در داربست های بافتی بوسیله تغییر غلظت ژلاتین حفره های با ابعاد متفاوتی بدست آمد. در داربست های با درصدهای وزنی-حجمی ژلاتین 3.75 و 5، حفره هایی به ابعاد 100 تا 450 میکرومتر پدید آمد. متوسط ابعاد حفره ها با افزایش درصد ژلاتین افزایش یافت. همچنین خواص داربست ها در زمینه جذب آب مورد بررسی قرار گرفت. نتایج نشان داد که با افزایش غلظت ژلاتین در محلول از 3.75 به 5 درصد، جذب آب داربست تولید شده به میزان 104 درصد کاهش یافت. افزایش درصد ژلاتین باعث کاهش جذب آب گردید.


     1.        Martínez-Pérez, C. A., Olivas-Armendariz, I., Castro-Carmona, J. S., & García-Casillas, P. E. Scaffolds For Tissue Engineering Via Thermally Induced Phase Separation.  In Advances in Regenerative Medicine. InTech. (2011).
2.        Hutmacher, D. W. Scaffolds In Tissue Engineering Bone And Cartilage. Biomaterials. 21, 24, (2000), 2529-2543.
3.        Vogt, S., Larcher, Y., Beer, B., Wilke, I., Schnabelrauch, M., & Schnabelrauch, M. Fabrication Of Highly Porous Scaffold Materials Based On Functionalized Oligolactides And Preliminary Results On Their Use In Bone Tissue Engineering. Eur Cell Mater. 4, (2002), 30-38.
4.        Ma P.X., Zhang R.Y., Microtubular architecture of biodegradable polymer scaffolds. Journal of Biomedical Materials Research Part A. 56, 4, (2001), 469-477.
5.        Lien, S. M., Ko, L. Y., & Huang, T. J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia. 5, 2, (2009), 670-679.
6.        Maeda, Y., Jayakumar, R., Nagahama, H., Furuike, T., & Tamura, H. Synthesis, characterization and bioactivity studies of novel b-chitin scaffolds for tissue- engineering applications.  International Journal of Biological Macromolecules. 42, 5, (2008), 463-467.
7.        Nagahama, H., Divya Rani, V. V., Shalumon, K. T., Jayakumar, R., Nair, S. V., Koiwa, S., et al. Preparation, characterization, bioactive and cell attachment studies of a-chitin/gelatin composite membranes. International Journal of Biological Macromolecules. 44, 4, (2009a), 333-337.
8.        Nagahama, H., Maeda, H., Kashiki, T., Jayakumar, R., Furuike, F., & Tamura, H. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydrate Polymers. 76, 2, (2009b), 255-260.
9.        Liu, X. and Ma, P.X. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 30, 25, (2009), 4094-4103.
10.     Sultana, N., & Wang, M. Fabrication of Tissue Engineering Scaffolds Using the Emulsion Freezing / Freeze-drying Technique and Characteristics of the Scaffolds. Integrated Biomaterials in Tissue Engineering. 2012, (2012), 63-89.
11.     De Lima, J. A., & Felisberti, M. I. Pororus polymer structure obtained via the TIPS process from EVOH/PMMA/DMF solutions. Journal of Membrane Science. 344, 1, (2009), 237-243.
12.     Olivas- Armendáriz I, García-Casillas P, Martinez-Sánchez R, Villafañe A.M and Martínez- Pérez C.A, Chitosan/MWCNT composites prepared by thermal induced phase separation. Journal of Alloys and Compounds. 495, 2, (2010), 592-595.
13.     Sultana, N., Mokhtar, M., Hassan, M. I., Jin, R. M., Roozbahani, F., & Khan, T. H. Chitosan-based nanocomposite scaffolds for tissue engineering applications. Materials and Manufacturing Processes. 30, 3, (2015), 273-278.
14.     Mao, J., Zhao, L., Yao, K. De, Shang, Q., Yang, G., & Cao, Y. Study of novel chitosan-gelatin artificial skin in vitro. Journal of Biomedical Materials Research Part A. 64, 2, . (2002), 301-308.
15.     Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F. and Gao, J., Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method.  Acta Biomaterialia. 6, 3, (2010), 1167-1177.
16.     Whang K., and Healy K.E., Methods of Tissue Engineering, A. Atala and R.P. Lanza, (Eds.), Academic Press, San Diego, CA, USA (2002).
17.     Banerjee I, Mishra D, and Maiti T.K. PLGA Microspheres Incorporated Gelatin   Scaffold: Microspheres Modulate Scaffold Properties. International Journal of Biomaterials. 2009, (2009), 1-9.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir