IJE TRANSACTIONS B: Applications - Special Issue - Sustainable Technologies for Water and Environment; Guest Editor Prof. Dr. Ahmad Fauzi Ismail and Associate Guest Editor Dr. Lau Woei Jye, Universiti Teknologi Malaysia (UTM), Malaysia
Vol. 31, No. 8 (August 2018) 1446-1454    Article in Press

downloaded Downloaded: 80   viewed Viewed: 977

Nurul H. W. Hazmo, R. Naim, A. F. Ismail, W. J. Lau, I. Wan Azelee and Mohd Khairul Naim Ramli
( Received: December 15, 2017 – Accepted: March 28, 2018 )

Abstract    The objective of this work is to develop a new class of nanocomposite ultrafiltration (UF) membranes with excellent solute rejection rate and superior water flux using zeolitic imidazolate framework-8 (ZIF-8) and multi-walled carbon nanotubes (MWCNTs). The effect of ZIF-8 and MWCNTs loadings on the properties of polyvinyldifluoride (PVDF)-based membrane were investigated by introducing respective nanomaterial into the polymer dope solution. Prior to filtration tests, all the membranes were characterized using several important analytical instruments, i.e., SEM-EDX and contact angle analyzer. The addition of the nanoparticles into the membrane matrix has found to increase the membrane pore size and improve its hydrophilicity compared to the pristine membrane. The separation performance of membranes was determined with respect to pure water flux and rejections against bovine serum albumin (BSA) and humic acid (HA).The experimental findings indicated that the nanocomposite membranes in general demonstrated higher permeation flux and solute rejection compared to the pristine membrane and the use of ZIF-8 was reported to be better than that of MWCNTs in preparing nanocomposite UF membranes owing to its better flux and high percentage of solute rejection.


Keywords    Multi-walled carbon nanotubes, Nanoparticles, Ultrafiltration, Zeolitic imidazolate framework-8



هدف از انجام این پژوهش، توسعه یک نوع جدید از غشاهای اولترافیلتراسیون(UF) نانوکامپوزیتی است که دارای میزان پسزدگی مطلوب املاح و نیز شار بالای آب میباشد. این غشاها با استفاده از پایه ایمیدازول زئولیتی (ZIF-8) و نانولوله های کربنی چنددیواره (MWCNTs) تهیه شدند. تأثیر بارگذاری ZIF-8 و MWCNTs بر خصوصیات غشای پلی وینیل دی فلوئورید با افزودن نانومواد مربوطه به محلول پلیمری مورد بررسی قرار گرفت. قبل از آزمایش های فیلتراسیون، ویژگیهای تمام غشاهای ساخته شده با استفاده از چندین تکنیک، مانند SEM-EDX و آنالیز زاویه تماس، مشخص شد. افزودن نانو ذرات به ماتریس غشایی، سبب افزایش اندازه روزنه های غشا شد و آبدوستی آن را نسبت به غشاء اولیه بهبود بخشید. عملکرد غشاهای ساخته شده در مورد آلبومین سرم گاوی و اسید هیومیک با توجه به شار آب خالص و املاح برگشتی تعیین شد. یافته های آزمایشی نشان داد که غشاهای نانوکامپوزیتی به طور کلی دارای شارنفوذی و برگشتی بیشتری نسبت به غشاء اولیه است و استفاده از ZIF-8 در تهیه غشاهای اولترافیلتراسیون نانوکامپوزیتی به دلیل شار مطلوب و درصد بالای املاح برگشتی، بهتر از MWCNTs است.

References    [1] Y. Zhao, Z. Xu, M. Shan, C. Min, B. Zhou, Y. Li, B. Li, L. Liu, X. Qian. “Effect of Graphite Oxide And Multi-Walled Carbon Nanotubes on The Microstructure and Performance of PVDF Membranes”, Separation and Purification Technology 103 (2013) 78–83.[2] J. Cho, G. Amy, J. Pellegrino, “Membrane Filtration of Natural Organic Matter; Factors and Mechanisms Affecting Rejection and Flux Decline With Charged Ultrafiltration (UF) Membrane”, Journal of Membrane Science 164 (2000) 89-110. [3] J. Li, X. Liu, J. Lu, Y. Wang, G. Li, F. Zhao, “Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles”, Journal of Colloid and Interface Science 484 (2016) 107–115.[4] J. Ma, Y. Zhao, Z. Xu, C. Min, B. Zhou, Y. Li, B. Li, J. Niu, “Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes [5] NO[6] R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, “Antifouling Membranes for Sustainable Water Purification: Strategies and Mechanisms”, Chem. Soc. Rev., (2016) 45, 5888-5924.[7] H. Esfandian, M. Parvini, B.Khoshandam, A. Samadi-Maybodi, “Removal of Diazinon from Aqueous Solutions in Batch Systems Using Cu-modified  Sodalite Zeolite: an Application of Response Surface Methodology”, International Journal of Engineering, Transaction B: Applications, Vol. 28, No.11, (2015), 1552-1563.[8] N. P. Panapitiya, S.N. Wijenayake, Y. Huang, D. Bushdiecker, D. Nguyen, C. Ratanawanate, G.J. Kalaw, C.J. Gilpin, I.H. Musselman, K.J. Balkus, J.P. Ferraris, “Stabilization of Immiscible Polymer Blends Using Structure Directing Metal Organic Frameworks (MOFs)”, Polymer 55 (2014) 2028-2034.[9] D. Ge, H. K.Lee, “Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples”, Journal of Chromatography A, 1218 (2011) 8490– 8495[10] S. Hwang, W. Chi, S. J. Lee, S. HyukIm, J. H. Kim, J-soo Kim, “Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix  membranes for CO2/CH4 gas separation”, Journal of Membrane Science 480 (2015) 11–19[11] A. Chaboki, S. A. Sadrnejad, M. Yahyaeii. Stress Transfer Modelling in Cnt Reinforced Composites Using Continuum Mechanics, International Journal of Engineering, Transaction B: Applications, Vol. 21, No.3, (2008), 227-234.[12] H. Q. Wu, B.B. Tang, P.Y. Wu, “Novel Ultrafiltration Membranes Prepared from a Multi-Walled Carbon  nanotubes/Polymer Composite”, J. Membr. Sci. 362 (2010) 374–383.[13] J.-H. Choi, J. Jegal, W.-N. Kim, “Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes”, J. Membr. Sci. 284 (2006) 406–415.[14] S. Majeed, D. Fierro, K. Buhr, J. Wind, B. Du, A. Boschetti-De-Fierro, V. Abetz, “Multi-walled Carbon Nanotubes (MWCNTs) Mixed Polyacrylonitrile (PAN) Ultrafiltration Membranes”, J. Membr. Sci. 403 (2012) 101–109.[15] T-Y. Liu, Y. Tong, Z-H. Liu, H-H. Lin, Y-K. Lin, B. V. Bruggen, X-L. Wanga, “Extracellular Polymeric Substances Removal of Dual-Layer (PES/PVDF) Hollow Fiber UF Membrane Comprising Multi-Walled Carbon Nanotubes For Preventing RO Biofouling”, Separation and Purification Technology 148 (2015) 57–67.[16] J. Xu, Z-L. Xu, “Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent”, Journal of Membrane Science 208 (2002) 203–212.[19] J. Wang, Y. Wang, Y. Zhang, A. Uliana, J. Zhu, J. Liu, and B. V. Bruggen, “Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance”, ACS Appl. Mater. Interfaces (2016), 8, 25508−25519.[20] L. Dong, M. Chen, J. Li, D. Shi, W. Dong, X. Li, Y. Bai, “Metal-organic framework-graphene oxide composites: A Facile Method to Highly Improve The CO2 Separation Performance of Mixed Matrix Membranes”, Journal of Membrane Science 520 (2016) 801–811.[21] E. M. Mahdi, J-C. Tan, “Dynamic Molecular Interactions Between Polyurethane and ZIF-8 in a polymer-MOF nanocomposite: Microstructural, Thermo-mechanical and Viscoelastic Effects”, Polymer 97 (2016) 31-43.[22] A. Bottino, G. Capannelli, A. Comite, “Preparation and characterization of Novel Porous PVDF–ZrO2 Composite Membranes”, Desalination 146 (2002) 35–40.[23] Z. Yu, G. Zeng, Y. Pan, L. Lv,  H. Min, L. Zhang, Y. He, “Effect of Functionalized Multi-Walled Carbon Nanotubes on The Microstructure And Performances of PVDF Membranes”, RSC Advances DOI: 10.1039/C5RA12819F.[24] N. A. A. Hamid, A. F. Ismail, T. Mastura, A. W. Zularisam, W. J. Lau, E. Yuliwati, M.S. Abdullah, “Morphology and Separation Performance Study of Polysulfone/titanium dioxide (PSF/TiO2) Ultrafiltration Membranes for Humic Acid Removal”, Desalination 273 (2011) 85-92.[25] S.Begum, A. Kausar, H. Ullah, M. Siddiq, “Potential of Polyvinylidene   Flouride/Carbon Nanotube Composite in Energy, Electronics and Membrane Technology: An Overview”, Polymer-Plastics Technology and Engineering, DOI:10.1080/03602559.2016.1185630.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir