IJE TRANSACTIONS B: Applications - Special Issue - Sustainable Technologies for Water and Environment; Guest Editor Prof. Dr. Ahmad Fauzi Ismail and Associate Guest Editor Dr. Lau Woei Jye, Universiti Teknologi Malaysia (UTM), Malaysia
Vol. 31, No. 8 (August 2018) 1464-1472    Article in Press

downloaded Downloaded: 77   viewed Viewed: 958

PS Goh and W. J. Lee
( Received: December 22, 2017 – Accepted: March 09, 2018 )

Abstract    The recent development in oil and gas industry increases the production and consumption of oil. The enormous amount of oily wastewater produced is urged to be treated to prevent humanity and environment from being threatened. Membrane technology is an appealing alternative for oily wastewater treatment due to its design simplicity, energy efficiency and environmentally benign approach. In this study, a poly[3-(N-2-methacryloylxyethyl-N,N-dimethyl)-ammonatopropanesulfonate] (PMAPS) incorporated thin film composite (TFC) membrane with excellent anti-fouling properties was fabricated for oil removal from oily wastewater through forward osmosis process. PMAPS was blended with the polyethersulfone (PES) dope solution and casted into PES support layer. The TFC was fabricated via interfacial polymerization (IP) technique to form a thin film polyamide (PA) layer atop of a PES support layer. The PMAPS incorporated TFC membranes has been characterized for their morphology, surface hydrophilicity and charges. The incorporation of PMAPS was compatible with the PES polymer matrix hence lead to defect-free thin film formation. Prior to the hydrophilicity of PMAPS, the resultant TFC membrane exhibited a high water flux of 10.3±0.3 L/m2.h and oil flux of 9.6±0.8 L/m2.h, reverse salt flux of 1.3±0.4 L/m2.h under FO mode using emulsified oily solution as feed solution and 2M NaCl as draw solution using active layer-feed solution (AL-FS) orientation. 99% of oil rejection was obtained. Also, PMAPS incorporated TFC membrane was able to outperform neat TFC membrane with lower fouling propensity for oily waste treatment.


Keywords    Forward osmosis, thin film composite membrane, oily wastewater, zwitterion



توسعه اخیر در صنعت نفت و گاز تولید و مصرف نفت را افزایش داده است. برای جلوگیری از تهدید بشریت و محیط زیست مقدار زیادی از فاضلاب های روغنی که تولید می شود نیازمند عملیات تصفیه می باشند. فن آوری غشای جایگزین جذاب برای تصفیه فاضلاب روغنی به علت سادگی طراحی آن، بهره وری انرژی و رویکرد های محیط زیستی‌ آن مورد توجه قرار گرفته است. در این مطالعه غشای PMFPبا ویژگی های عالی ضد گرفتگی برای حذف نفت از فاضلاب نفتی از طریق فرایند اسمز معکوس ساخته شده است. PMAPSبامحلول پروتئین PESمخلوط شده و عنوان لایه حفاظتیPESعمل می‌کند. TFC با استفاده از روش پلیمریزاسیون سطحی ساخته شده استتا لایه پلی آمیدرا در بالای یک لایه محافظ PES تشکیل دهد. برای نمونهPMAPS شامل غشاهای TFC مورفولوژی، هیدرفیلیسیتی سطح و بار هاتجزیه و تحلیل شده است. پیوست PMAPS با ماتریس پلیمری PES سازگار بوده و منجر به تشکیل فیلم نازک بدون نقص می شود. قبل از هیدروفیل بودنPMAPS، نمونه۱٪PMAPS-TFC غشاء، جریان بالا بالای آب و نفت به ترتیب برابر با ۱۵.۱۲ ± ۰.۳ L / m2.h و ۰.۱±۰.۰۸ g / m2.hنشان میدهند شار معکوس نمک معادل ۰.۴۳± ۳.۹۳ L / m2h در حالت FO با استفاده از محلول روغن امولسیون به عنوان محلول خوراکی و ۲M NaCl به عنوان راه حل مطرح شده جهت تغذیه لایه محلول فعال (AL-FS).99 ٪جدا سازی نفت به دست آماده است. همچنین، PMAPS شامل غشای TFC عملکرد بهتری نسبت به غشای TFCکه تمایل کمتری برای جدا سازی فاضلاب های نفتی را دارا می‌باشد.


1. Huang, S., Ras, R.H. and Tian, X., "Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling", Current Opinion in Colloid & Interface Science, (2018).
2. Poulopoulos, S., Voutsas, E., Grigoropoulou, H. and Philippopoulos, C., "Stripping as a pretreatment process of industrial oily wastewater", Journal of hazardous materials,  Vol. 117, No. 2-3, (2005), 135-139.
3. Moosai, R. and Dawe, R.A., "Gas attachment of oil droplets for gas flotation for oily wastewater cleanup", Separation and purification technology,  Vol. 33, No. 3, (2003), 303-314.
4. Zeng, Y., Yang, C., Zhang, J. and Pu, W., "Feasibility investigation of oily wastewater treatment by combination of zinc and pam in coagulation/flocculation", Journal of hazardous materials,  Vol. 147, No. 3, (2007), 991-996.
5. Kriipsalu, M., Marques, M., Nammari, D.R. and Hogland, W., "Bio-treatment of oily sludge: The contribution of amendment material to the content of target contaminants, and the biodegradation dynamics", Journal of hazardous materials,  Vol. 148, No. 3, (2007), 616-622.
6. Ghasemian, P., Sharghi, E.A. and Davarpanah, L., "The influence of short values of hydraulic and sludge retention time on performance of a membrane bioreactor treating sunflower oil refinery wastewater", International Journal Of Engineering,  Vol. 30, No. 10, (2017), 1417-1424.
7. Park, E. and Barnett, S.M., "Oil/water separation using nanofiltration membrane technology", Separation Science and Technology,  Vol. 36, No. 7, (2001), 1527-1542.
8. Kasemset, S., Lee, A., Miller, D.J., Freeman, B.D. and Sharma, M.M., "Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation", Journal of membrane science,  Vol. 425, (2013), 208-216.
9. Bagheripour, E., Moghadassi, A. and Hosseini, S., "Preparation of polyvinylchloride nanofiltration membrane: Investigation the effect of thickness, prior evaporation time and addition polyethylenglchol as additive on membrane performance and properties", International Journal of Engineering-Transactions C: Aspects,  Vol. 29, No. 3, (2016), 280-287.
10. Hickenbottom, K.L., Hancock, N.T., Hutchings, N.R., Appleton, E.W., Beaudry, E.G., Xu, P. and Cath, T.Y., "Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations", Desalination,  Vol. 312, (2013), 60-66.
11. Duong, P.H., Chung, T.-S., Wei, S. and Irish, L., "Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil–water separation process", Environmental science & technology,  Vol. 48, No. 8, (2014), 4537-4545.
12. Mi, B. and Elimelech, M., "Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents", Journal of membrane science,  Vol. 348, No. 1-2, (2010), 337-345.
13. Martinetti, C.R., Childress, A.E. and Cath, T.Y., "High recovery of concentrated ro brines using forward osmosis and membrane distillation", Journal of membrane science,  Vol. 331, No. 1-2, (2009), 31-39.
14. Song, X., Wang, L., Tang, C.Y., Wang, Z. and Gao, C., "Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process", Desalination,  Vol. 369, (2015), 1-9.
15. Zhang, S., Wang, P., Fu, X. and Chung, T.-S., "Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (fo-md)", water research,  Vol. 52, (2014), 112-121.
16. Lau, W., Gray, S., Matsuura, T., Emadzadeh, D., Chen, J.P. and Ismail, A., "A review on polyamide thin film nanocomposite (tfn) membranes: History, applications, challenges and approaches", water research,  Vol. 80, No., (2015), 306-324.
17. Liang, H.-Q., Hung, W.-S., Yu, H.-H., Hu, C.-C., Lee, K.-R., Lai, J.-Y. and Xu, Z.-K., "Forward osmosis membranes with unprecedented water flux", Journal of membrane science,  Vol. 529, No., (2017), 47-54.
18. Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M., "Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure", Journal of membrane science,  Vol. 367, No. 1-2, (2011), 340-352.
19. Bagheripour, E., Moghadassi, A. and Hosseini, S., "Incorporated poly acrylic acid-co-fe3o4 nanoparticles mixed matrix polyethersulfone based nanofiltration membrane in desalination process", International Journal Of Engineering,  Vol. 30, No. 6, (2017), 821-829.
20. Gholami, F., Zinadini, S., Zinatizadeh, A., Noori, E. and Rafiee, E., "Preparation and characterization of an antifouling polyethersulfone nanofiltration membrane blended with graphene oxide/ag nanoparticles", International Journal of Engineering-Transactions A: Basics,  Vol. 30, No. 10, (2017), 1425-1433.
21. Chan, W.-F., Marand, E. and Martin, S.M., "Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved ro performance and surface anti-biofouling resistance", Journal of membrane science,  Vol. 509, (2016), 125-137.
22. Chan, W.-F., Chen, H.-y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E. and Johnson, J.K., "Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination", Acs Nano,  Vol. 7, No. 6, (2013), 5308-5319.
23. Kobayashi, M., Terayama, Y., Kikuchi, M. and Takahara, A., "Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups", Soft Matter,  Vol. 9, No. 21, (2013), 5138-5148.
24. Han, G., de Wit, J.S. and Chung, T.-S., "Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the pro mode", water research,  Vol. 81, No., (2015), 54-63.
25. Chun, Y., Kim, S.-J., Millar, G.J., Mulcahy, D., Kim, I.S. and Zou, L., "Forward osmosis as a pre-treatment for treating coal seam gas associated water: Flux and fouling behaviour", Desalination,  Vol. 403, No., (2017), 144-152.
26. Zhu, Y., Zhang, F., Wang, D., Pei, X.F., Zhang, W. and Jin, J., "A novel zwitterionic polyelectrolyte grafted pvdf membrane for thoroughly separating oil from water with ultrahigh efficiency", Journal of Materials Chemistry A,  Vol. 1, No. 18, (2013), 5758-5765.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir