IJE TRANSACTIONS C: Aspects Vol. 32, No. 3 (March 2019) 424-429   

downloaded Downloaded: 38   viewed Viewed: 357

S. E. Rezaei and S. K. Sadrnezhaad
( Received: July 20, 2018 – Accepted in Revised Form: March 07, 2019 )

Abstract    Fe is an impurity in most leach liquors. Its coexistence with copper in leaching solution of chalcopyrite (CuFeS2) which is the most important mineral of copper creates major extraction problems. Hydrochloric acid dissolves both copper and iron during chloride leaching of this mineral. Separation of Fe from Cu is thus necessary to obtain pure copper. This paper presents a novel method for precipitation of Cu over Fe from mixed chloride acidic liquors. Hydrofluoric acid is used as the major unraveling agent. Kinetic studies show that a second-order CuCl2 precipitation reaction with a chemical rate constant of k = 0.416 L/mol prevails the process at the room temperature. For validation of the results, precipitate characterization by x-ray fluorescence (XRF) and x-ray diffraction (XRD) and solution analysis by atomic absorption spectrometry (ABS) are performed. Nitrogen presence is shown to help separation of iron from copper. The optimum value of pH (1.09) is achieved when nitrogen helps parting of 99 % iron II ions in the solution and sole deposition of copper II chloride precipitate.


Keywords    Chalcopyrite; Chloride Leaching; Copper-Iron Separation; CuF2 Deposition; Reaction Mechanism



آهن در بسیاری از محلولهای لیچینگ وجود دارد. همزیستی آهن با مس در محلول لیچینگ کالکوپرایت (CuFeS2) که مهمترین ماده معدنی مس است، باعث ایجاد مشکلات عدیده ای در فرایند استخراج می شود. زیرا اسید هیدروکلریک مورد استفاده در لیچینگ کلریدی کالکوپرایت، هر دو عنصر مس و آهن را حل می کند. بنابراین برای تهیه مس خالص، لازم استFe ازCu جدا شود. این مقاله روش جدیدی برای رسوب دادن Cu در برابر Fe از محلول اسیدی حاوی کلریدها ارائه می دهد. در این تحقیق، اسید هیدروفلوئوریک به عنوان عامل اصلی جداسازی آهن از مس مورد استفاده قرار می گیرد. مطالعات سینتیکی نشان می دهد که راسب شدنCuCl2 طبق یک واکنش درجه دو با ثابت سرعتk = 0.416 L/mol در دمای اتاق اتفاق می افتد. برای اعتبار سنجی نتایج، مشخصه رسوب توسط اشعه ماوراء بنفش (XRF) و پراش اشعه ایکس(XRD) و تجزیه و تحلیل با اسپکترومتر جذب اتمی(ABS) انجام شده که نشان می دهد که حضور نیتروژن، جداسازی آهن از مس را تسهیل می کند. مقدار pHبهینه (1.09) موقعی به دست می آید که نیتروژن با جدایش 99٪ یون آهنII موجود در محلول، باعث رسوب همه کلرید مس II و بدین ترتیب جدایش تقریبا" کامل دو عنصر می شود.


1. Elshkaki, A., Graedel, T., Ciacci, L. and Reck, B.K., "Resource demand scenarios for the major metals", Environmental Science & Technology,  Vol. 52, No. 5, (2018), 2491-2497.
2. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E.Y. and Deveci, H., "Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling", Minerals Engineering,  Vol. 25, No. 1, (2012), 28-37.
3. Kim, E.-y., Kim, M.-s., Lee, J.-c., Jeong, J. and Pandey, B., "Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in hcl solution", Hydrometallurgy,  Vol. 107, No. 3-4, (2011), 124-132.
4. Córdoba, E., Muñoz, J., Blázquez, M., González, F. and Ballester, A., "Leaching of chalcopyrite with ferric ion. Part i: General aspects", Hydrometallurgy,  Vol. 93, No. 3-4, (2008), 81-87.
5. Mostad, E., Rolseth, S. and Thonstad, J., "Electrowinning of iron from sulphate solutions", Hydrometallurgy,  Vol. 90, No. 2-4, (2008), 213-220.
6. Alguacil, F.J., Garcia-Diaz, I., Lopez, F. and Rodriguez, O., "Recycling of copper flue dust via leaching-solvent extraction processing", Desalination and Water Treatment,  Vol. 56, No. 5, (2015), 1202-1207.
7. Kordosky, G., "Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually", Journal of the Southern African Institute of Mining and Metallurgy,  Vol. 102, No. 8, (2002), 445-450.
8. Nayaka, G., Zhang, Y., Dong, P., Wang, D., Zhou, Z., Duan, J., Li, X., Lin, Y., Meng, Q. and Pai, K., "An environmental friendly attempt to recycle the spent li-ion battery cathode through organic acid leaching", Journal of Environmental Chemical Engineering,  Vol. 7, No. 1, (2019), 102854.
9. Sato, H., Nakazawa, H. and Kudo, Y., "Effect of silver chloride on the bioleaching of chalcopyrite concentrate", International Journal of Mineral Processing,  Vol. 59, No. 1, (2000), 17-24.
10. Shang, H., Wu, B., Wen, J.K. and Cui, X.L., "Analysis of microbial community in heap bioleaching of low-grade copper sulfide ores", in Key Engineering Materials, Trans Tech Publ. Vol. 777, (2018), 277-281.
11. Wang, H., Zhang, S., Li, B., Pan, D.a., Wu, Y. and Zuo, T., "Recovery of waste printed circuit boards through pyrometallurgical processing: A review", Resources, Conservation and Recycling,  Vol. 126, (2017), 209-218.
12. Yoon, H.-S., Kim, C.-J., Chung, K.W., Lee, J.-Y., Shin, S.M., Kim, S.-R., Jang, M.-H., Kim, J.-H., Lee, S.-I. and Yoo, S.-J., "Ultrasonic-assisted leaching kinetics in aqueous fecl 3-hcl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite", Korean Journal of Chemical Engineering,  Vol. 34, No. 6, (2017), 1748-1755.
13. Cruz-Robles, I., Vaamonde, A.J.V., Alonso, E., Pérez-Rábago, C.A. and Estrada, C.A., "Potential of solar central tower systems for thermal applications in the production chain of copper by pyrometallurgical route", in AIP Conference Proceedings, AIP Publishing. Vol. 2033, (2018), 020002-1-020002-6.
14. Chang-Li, L., Jin-Lan, X., Zhen-Yuan, N., Yi, Y. and Chen-Yan, M., "Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile acidianus manzaensis", Bioresource Technology,  Vol. 110, (2012), 462-467.
15. Rocchetti, L., Vegliò, F., Kopacek, B. and Beolchini, F., "Environmental impact assessment of hydrometallurgical processes for metal recovery from weee residues using a portable prototype plant", Environmental Science & Technology,  Vol. 47, No. 3, (2013), 1581-1588.
16. Subramanian, M. and Manzer, L., "A" greener" synthetic route for fluoroaromatics via copper (II) fluoride", Science,  Vol. 297, No. 5587, (2002), 1665-1665.
17. Shahrina, S., Lau, W., Goha, P., Jaafara, J. and Ismaila, A., "Adsorptive removal of Cr (VI) and Cu (II) ions from water solution using graphene oxide–manganese ferrite (GMF) nanomaterials", International Journal of Engineering,  Vol. 31, No. 8, (2018), 1341-1346.
18. Al-Harahsheh, M., Kingman, S. and Al-Harahsheh, A., "Ferric chloride leaching of chalcopyrite: Synergetic effect of CuCl2", Hydrometallurgy,  Vol. 91, No. 1-4, (2008), 89-97.
19. Ruiz, M., Montes, K. and Padilla, R., "Chalcopyrite leaching in sulfate–chloride media at ambient pressure", Hydrometallurgy,  Vol. 109, No. 1-2, (2011), 37-42.
20. Carneiro, M.F.C. and Leão, V.A., "The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate", Hydrometallurgy,  Vol. 87, No. 3-4, (2007), 73-82.
21. Ayotte, P., Hébert, M. and Marchand, P., "Why is hydrofluoric acid a weak acid?", The Journal of Chemical Physics,  Vol. 123, No. 18, (2005), 184501.
22. Kinnunen, P.H.M. and Puhakka, J.A., "Chloride‐promoted leaching of chalcopyrite concentrate by biologically‐produced ferric sulfate", Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology,  Vol. 79, No. 8, (2004), 830-834.
23. Valenta, R., Kemp, D., Owen, J., Corder, G. and Lèbre, É., "Re-thinking complex orebodies: Consequences for the future world supply of copper", Journal of Cleaner Production,  Vol. 220, (2019), 816-826.
24. Jafari, M., Karimi, G. and Ahmadi, R., "Improvement of chalcopyrite atmospheric leaching using controlled slurry potential and additive treatments", Physicochem. Probl. Miner. Process,  Vol. 53, No. 2, (2017), 1228-1240.
25. D. Dreisinger, 2006. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy, 83, pp. 10–20.
26. A.A. Baba1, K.I. Ayinla, F.A. Adekola, M.K. Ghosh, O.S. Ayanda, R.B. Bale, A.R. Sheik, S.R. Pradhan, 2012. Alafara A. Baba1,2,*, Kuranga I. Ayinla3, Folahan A. Adekola1, Malay K. Ghosh2, Olushola S. Ayanda4, Rafiu B. Bale5, Abdul R. Sheik2, Sangita R. Pradhan, International Journal of Mining Engineering and Mineral Processing, 1(1), pp 1-16.
27. L. Chang-Li, X. Jin-Lan, N. Zhen-Yuan, Y. Yi, 2012. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis, Bioresource Technology, 110, pp. 462-467.
28. Z.Y. Lu, M.I. Jeffrey, F. Lawson. The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy. (2000) 56, 189–202
29. C.L. Liang, J.L. Xia, Z.Y. Nie, Y. Yang, C.Y. Ma. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Bioresour. Technol. (2012) 110, 462–467.
30. Y. Cai, X. Chen, J. Ding, D. Zhou, 2012. Leaching mechanism for chalcopyrite in hydrochloric acid. Hydrometallurgy, 113–114, pp. 109–118. 
31. M.L. O’Malley, K.C. Liddell, 1987. Leaching of CuFeS2 by aqueous FeCl3, HCl, and NaCl: Effects of solution composition and limited oxidant. Metallurgical Transactions B, 18(3), pp. 505-510
32. F. Habashi, T. Toor, 1987. Aqueous Oxidation of Chalcopyrite in Hydrochloric Acid, Metallurgical Transactions B, 10, pp. 49-56
33. T. Smolinski, D. Wawszczak, A. Deptula, W. Lada, T. Olczak, M. Rogowski, M. Pyszynska, A. Chmielewski, 2017. Solvent extraction of Cu, Mo, V, and U from leach solutions of copper ore and flotation tailings. Journal of Radioanalytical and Nuclear Chemistry, 314, p. 69–75.
34. U. Mohanty, L. Rintala, P. Halli, P. Taskinen, M. Lundström, 2018. Hydrometallurgical Approach for Leaching of Metals from Copper Rich Side Stream Originating from Base Metal Production. Metals, 8(1), p. 40.
35. X. Hao, X. Liu, Q. Yang, H. Liu, H. Yin, G. Qiu, Y. Liang, 2018. Comparative study on bioleaching of two different types of low-grade copper tailings by mixed moderate thermophiles. Transaction of nonferrous metal society of china, 28(9), p. 1847−1853 .
36. Y. Li, G. Qian, P. Brown, A. Gerson, 2017. Chalcopyrite dissolution: Scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite. Geochimica et Cosmochimica Acta, 212, pp. 33-47
37. Y. Turkmen, K. Erol, 2009. Acidified Ferric Chloride Leaching of a Chalcopyrite Concentrate. Ore Dressing, 11(22), pp. 16-24.
38. S.K. Sadrnezhaad, E. Keshavarz Alamdari, 2004. Thermodynamics of Extraction of Zn2+ from Sulfuric Acid Media with a Mixture of Dehpa and Mehpa. IJE Transactions B: Applications, 17(2), pp. 191-200.
39. K. Sadrnezhaad, A. Gharavi and A. Namazi, 2003. Software for Kinetic Process Simulation. IJE Transactions A: Basics, 16(1), pp. 59-70.
40. S.K. Sadrnezhaad, Kinetic Processes in Metallurgy and Materials Engineering, 5th Ed., Amirkabir Publishing Corp., Tehran, 2017.
41. Z. Zhu, W. Zhang, C. Y. Cheng, 2012. A synergistic solvent extraction system for separating copper from iron in high chloride concentration solutions. Hydrometallurgy, 113-114, pp. 155-159.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir