IJE TRANSACTIONS B: Applications Vol. 32, No. 5 (May 2019) 661-666   

downloaded Downloaded: 21   viewed Viewed: 366

J. T. S. Al-Obaedi
( Received: August 24, 2018 – Accepted in Revised Form: May 02, 2019 )

Abstract    The desired gap headway of drivers, while close following, represents the main parameter in determining the following distance between vehicles. This paper uses the raw individual vehicles data taken from loop detectors for millions of vehicles used M25 and M42 in order to estimate the gap headway distributions between successive pairs of vehicles. The data used in this paper were filtered so as to focus on the cases of close following behavior only and more than quarter million pairs of close following cases is used to presents the results. Such huge sample size taken from loop detectors will increase the results reliability as previous research used limited sample size. The results presented the cumulative distribution of drivers’ gap headway and suggested that the mean gap headway of drivers is about 1.1 s with standard deviation of 0.42 s. The lane choice found to be significantly influencing the desired gap headway for speed higher than 70km/h only. The effect of the follower vehicle type of the desired gap headway was also examined and the results suggested that such effect is insignificant. The findings of this paper are suggested to be used as inputs for traffic micro-simulation models.


Keywords    Gap Headway Distribution; Drivers’ Reaction Time; Close Followin; Microsimulation; Vehicle Types; Following Distance



گشتاور مورد نظر رانندکان در حالی که نزدیک بودن، نشان دهنده پارامتر اصلی در تعیین فاصله بین وسایل نقلیه است. این مقاله از داده های خودروهای خام فردی گرفته شده از آشکارساز حلقه برای میلیون ها خودرو استفاده شده از M25 و M42 به منظور تخمین توزیع پیشرفت شکاف بین جفت های متوالی وسایل نقلیه استفاده می کند. داده های مورد استفاده در این مقاله فیلتر شده اند تا تمرکز بر موارد رفتاری نزدیک باشد و بیش از یک چهارم میلیون جفت موارد زیر برای ارائه نتایج استفاده می شود. اندازه نمونه ای بزرگ از آشکارسازهای حلقه به عنوان تحقیق قبلی استفاده از اندازه نمونه محدود افزایش اعتبار نتایج را افزایش می دهد. نتایج نشان داد که توزیع تجمعی ریزپردازنده رانندگان، نشان می دهد که متوسط رانندگی شکاف رانندگان حدود 1/1 ثانیه با انحراف معیار 42/0 ثانیه است. انتخاب لاین نشان داد که به طور قابل توجهی تحت تاثیر سرعت پیشرفت مورد نظر برای سرعت بیش از 70 کیلومتر در ساعت تنها است. اثر نوع وسیله نقلیه دنباله ای از مسیر پیشرفت مورد نظر نیز مورد بررسی قرار گرفت و نتایج نشان داد که چنین اثر ناچیز است. یافته های این مقاله پیشنهاد می شود که به عنوان ورودی برای مدل های شبیه سازی ترافیک ترافیکی استفاده شود.


1. Parker, M. T., “The effect of heavy goods vehicles and following behavior on capacity at motorway roadwork sites”, Traffic Engineering and Control, Vol. 37, No. 9, (1996), 524–531.
2. Sayer, J.R., Mefford, M.L., and Huang, R., The effect of lead vehicle size on driver following behavior: Is ignorance truly bliss? In Proceedings of the 2nd international driving symposium on human factors in driver assessment, training and vehicle design, 2003, University of Iowa.
3. Brackstone, M., Waterson, B. and McDonald, M., “Determinants of following distance in congested traffic”, Transportation Research: F, 12(2), (2009), 131-142.
4. Risto, M. and Martens, H. M., “Driver headway choice: A comparison between driving simulator and real-road driving”, Transportation Research: F, Vol.25. No. A, (2014), 1-9.
5. Department for Transport (DfT), “The official Highway Code”, (2018),  UK.
6. Sumia, L. and Ranga, V., “Intelligent Traffic management system for Prioritizing Emergency Vehicles in a Smart City”, International Journal of Engineering, Transaction B: Applications, Vol. 31, No. 2,  (2018), 278-283
7. Abhigna, D., Ramees, M. and Ravishankar, K. V. R. “Effect of gap acceptance behavior of the right turning vehicles on the major road stream for uncontrolled three-legged intersection under mixd traffic conditions”, International Journal of Engineering, Transaction B: Applications, Vol. 31, No. 6,  (2018), 870-876.
8. Gipps, P.G., “A behavioral car following model for computer simulation”, Transportation Research: B, Vol. 15, No. 2, (1986), 105-111.
9. Al-Obaedi, J. and Yousif, S., “Micro-simulation model for motorway merges with ramp metering controls”, IEEE transactions on Intelligent Transport Systems, Vol. 13, No. 1, (2012), 296-306.
10. Johansson, G. and Rumer, K., “Drivers’ brake reaction times”, Human Factors, Vol. 13, No. 1, (1971), 23-27.
11. Zhang, X. and Bham, G.H. (2007) Estimation of driver reaction time from detailed vehicle trajectory data, Proceeding of the 18th IASTED International Conference, 574-579.
12. Yousif, S. and Al-Obaedi, J., “Close following behavior: Testing visual angle car following models using various sets of data”, Transportation Research: F, Vol. 14, No. 2, (2011), 96-110.
13. Robert,T., Naujoks, F. and Neukum, A., “The perceived criticality of different time headways is depending on velocity”, Transportation Research: F, Vol. 58, (2018), 1043-1052.
14. Risto, M. and Martens, M. H., ”Time and space: The difference between following time headway and distance headway instructions”, Transportation Research: F, Vol. 17, (2013), 45-51.
15. Badhrudeen, M, Ramesh, V. and Vanajakshi, L., “Headway Analysis Using Automated Sensor Data under Indian Traffic Conditions”, Transportation Research Procedia, Vol. 17, (2016), 331-339.
16. Klein, D.P. and Barton, M., “Safe road, reliable journeys and informed travelers”, Logistics & Transport Focus, Vol. 12, No. 1, (2010), 20-23. 
17. Heydecker, B. G. and Addison, J. D., “Analysis and modelling of traffic flow under variable speed limits”, Transportation Research: C, Vol. 19, No. 2,(2011), 206-217.
18. Sultan B., McDonald M., "The lane changing process: Data analysis and modeling behavior." Traffic Engineering and Control, Vol. 43, No. 5, (2011), 202-207.
19. Brackstone, M. and McDonald, M., “Driver headway: How close is too close on a motorway, Ergonomics, Vol. 50, No. 8, (2007), 1183–1195.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir