Vol. 5, No. 1&2 (May 1992) 1-10   

downloaded Downloaded: 59   viewed Viewed: 1317

A. M. Kaynia
Department of Civil Engineering
Isfehan University of Technology
Isfehan, Iran

G. F. Dargush

Department of Civil Engineering
State University of NewYork at Buffalo
Buffalo, NY, USA

Abstract    Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid in the pores. In addition, approximate fundamental solutions for short times are derived by analytically inverting the Laplace transform expressions. Finally numerical results are presented to highlight the essential features of the problem as well as to investigate the accuracy of the time domain solutions.



1. Biot, M. A, J. Acoust. Soc. Am., (1956), 28- 168 .

2. Biot, M. A, J. Appl. Phys.Vol. 33, No. 4, (1962), 1482.

3. van der Grinten, J. G. M.,van Dongen, M. E. Hand van der Kogel, H., “Strain and Pore Pressure Propagation in a Water Saturated Porous Medium, “, J. Appl. Phys., Vol. 62, No. 2, (1987), 4682.

4. Truesdell, C. and Toupin, R. A.,1960, “The Classical Field Theories, “Handbuch der Physik, edited by Flugge, S.,Vol. III, Springer- Verlag, Berlin, (1960).

5. Bowen, R. M.,”Theory of Mixtures in Continuum Physics”, A. C. Eringen, ed. Vol. III, Academic Press, NewYork, (1976).

6. Garg, S. K. , J. Geophys. Res.Vol. 76, (1971), 7947-7962.

7. Hsaieh, L. and Yew, C. H., J. Appl. Mech., ASME,Vol. 40, (1973), 873-878.

8. Prevost, J. H., Int. J. Eng. Sci., (1980).

9. Bowen, R. M. ,”Int. J. Eng. Sci., Vol. 20,(1982), 697-735.

10. Auriault, J. L.,”Int. J. Eng. Sci., (1980), 18-75.

11. Burridge, R. and Vargus, C. A., Geophys. J. R. Astr. Soc., Vol. 58, (1979), 61-90 .

12. Deresiewicz, H., Bulletin Seis. Soc.Am., Vol. 50, (1960), 599-607.

13. Norris., A. N., J. Acoust. Soc. Am., (1985), 77- 2012.

14. Kaynia, A. M. and Banerjee, P. K., “Fundametal Solutions of Biot's Equations of Dynamic Poroelasticity,” submitted., (1992).

15. Nowacki, W., Arch. Mech. Stos., Vol. 3, No. 9, (1957), 325.

16. Kupradze, V. D., “Three Dimensional Problemsof theMathematical Theory of Elasticityand Thermoelasticity, North Holland, Amsterdam, (1979).

17. Tosaka, No., Proc. 3rd Japan Symp. on BEM, JASCOME, (1986), 207-212.

18. Bonnet, G., J. Acoust. Soc. Am., Vol. 82, No. 5, (1987), 1758.

19. Bonnet, G., Bonnet, G.andBard, P. Y., Geophys.J. R.Astr. Soc., (1987), 90-521.

20. Biot, M. A., J. Appl. Phys., (1941), 12- 155.

21. Lord, H. W. and Shulman, Y. , J. Mech. Phys. Solids, (1967), 15- 299 .

22. Fox, N., Int. J. Engrg. Sci., Vol. 7, (1969), 437-445.

23. Zienkiewicz, O. C.,Chang, C. T. and Bettes, P., Geotechnique, (1980).

24. Hetnarski, R. B., Arch. Mech. Stos., Vol. 16, (1963), 23-31.

25. Abramowits, M. and Stegun, I. A., Handbook of Mathematical Functions, National Bureau of Standards, Washington, D. C., (1965).

26. Yew, C. H. and Jogi, Exp. Mech., Vol. 18, (1978), 167-172.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir