Vol. 5, No. 1&2 (May 1992) 11-24   

downloaded Downloaded: 94   viewed Viewed: 1233

S.A. Sadrnezad

Department of Civil Engineering
Khajeh-Nasirodin Toosi University of Technology
Tehran, Iran


Abstract    A multilaminate based model capable of predicting the behavior of granular material on the basis of sliding mechanisms and elastic behavior of particles is presented. The capability of the model to predict the behavior of sand under arbitrary stress paths is examined. The influences of rotation of the direction of principal stress axes and induced anisotropy are included in a rational way without any additional hypotheses. The predicted numerical results of sand specimens in hollow cylindrical and true triaxial tests and also under undrained conditions are presented.



1. Christofferson, M., Mehrabadi, M. and Nemat-Nasser, S., J. Appl. Mech., Vol. 48, (1981), 339-344.

2. Konishi, J., Proc. U. S. Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Eds. Cowin, S. C. and Satake, M., Gakujutsu Bunken Fukyukai, Tokyo, (1978).

3. Nemat-Nasser, S.and Mehrabadi, M. M.,”Stress and Fabric in Granular Masses, Mechanics of Granular Materials,” New Models and Constitutive Relations Eds. Jenkins, J. T. and Satake, M., Elsevier Sci. Pub., (1983), 1-8.

4. Zienkiewicz, O. C. and Pande, G. N., J. Num. Anal., Methods in Geomechanics,Vol. 1, (1977), 219-247.

5. Pande, G. N. and Sharma, K. G.”, Int. J. for Numerical and Analyt. Meth., In Geomech.,(1983).

6. Bazant, Z. P. and Oh, B. H., “Microplane model for fracture analysis of concrete structures”, Proceeding Symposium on the Interaction of Non-nuclear Munitions with Structures, held at US Air Force Academy, Colorado Springs, Published by McGregorand Werner, Washington DC, (1983).

7. Pande, G. N., Sietruszczak, S. and Pande, G. N.”, Proceeding International Symposium Numerical Methods in Geomechanics, Zurich, A. A. Balkema, Roterdom, (1982).

8. Shiomi, T., Pietruszczak, S.andPande, G. N.”, Proceeding International Symposium Numerical Methods in Geomechanics, Zurich, Balkema, Roterdom, (1982).

9. Feda, J.”, Proc. First Bulg. Nat, Cong. Theor. Appl.Mech., Varna, Sofia, Vol. 1, (1971).

10.Taylor, D. W., “fundamentals of Soil Mechanics”, J. Wileyand Sons, 2nd reprint 700, (1966).

11. Bishop, A. W., Geotechnique, Vol. 2, No. 1, (1950), 113-116.

12. International workshop on constitutive equations for granular non-cohesive soils, Information Package Case Western Uni. Cleveland, (July. 1987), 22-24.

13. Naylor, D. J., Pande, G. N., Simpson, B. and Tabb, R., “Finite Elements in Geotechnical Engineering”, Pineridge Press, Swansea, (1983).

14. Casagrande, A., “Liquefaction and Cyclic Deformation of Sand-A critical review”, 5th Pan American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina, (1975).

15. Sadrnezhad, S. A. and Pande, G. N., A multilaminate model for sands”, Proceeding of 3rd International Symposium on Numerical Models in Geomechanics, NUMOG III, held on , Niagara Falls, Canada, (May. 1989), 8-11.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir